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Outlook

Infer causal relations between r.v. is challenging

Even more from pure observational data: no models involved, no ground truth!

In GRS, causality is key to understand the Earth’s system
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1 Causal inference for instantaneous observations (CIIO)

2 Kernel Conditional Deviance for Causal Inference (KCDC)

3 Results for:

Simulated data: bi-variate and multivariate
Data from RTM model PROSAIL
Data from RTM emulator
30 GRS causal inference problems
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Overview of causal inference methods

A. Multivariate granger
causality tests

B. Nonlinear state-space
method CCM

C. Causal network learning
algorithms (conditional
independendence testing)

D. Structural Causal models

KCDC, the method studied here and ANMs, the method to which we will compare its
performance belong to group D.
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Goal of Causal Inference for instantaneous observations

Given a system of p variables, with n observations available for each, learn underlying
causal Directed Acyclic Graph (DAG)
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Two step learning process

Learning a DAG can be separated into two steps:

1 Learn conditional independencies (learn dag skeleton and colliders)

2 Learn directions (learn undetermined causal relations)

Work presented here focuses on second part of learning process.
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Our task for two and three variable examples

Given that we know x and y dependent (x 6⊥⊥ y): choose between x → y or y → x
Given that we know x and z conditionally independent given y (x⊥⊥ z |y): choose
between x → y → z , x ← y ← z or x ← y → z .
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Idea behind KCDC

Following figure shows observations from model y = sin(x) + n where n ∼ N(0, 1)

In causal direction (x → y) complexity of p(y |x) does not depend on x whereas in
anticausal direction (y → x) complexity of p(x |y) varies more.
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How do we measure complexity?

Use the norm of vector of expected features as a proxy for complexity.

µ = Eφ(X ) = E


f (X )
X 2

sin(X )
...

g(X )



Intuition:
1 Expected feature vector represents distribution if adequate features chosen.
2 Expected feature vector of similar distributions constrained to subspace of feature

space and so have similar norms.
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Illustration: gaussian mixtures

The higher the number of components in a gaussian mixture the more complex it is.

Norm of mean vector can help us distinguish between distributions.
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Kernel Conditional Deviance for Causal Inference (KCDC)

Based on this idea [Mitrovic et al, 2018] introduced KCDC to infer direction of
causality for pairs of variables.

KCDC

Sx→y =
1

|B|

|B|∑
i=1

(
||µy|x∈bi ||2 −

1

|B|

|B|∑
j=1

||µy|x∈bj ||2

)2

B = b1, ..., bm are the bins that x is split into,

KCDC is the variance of mean feature norms, corresponding to different bins

Measure in both directions, direction of minimum variance is causal direction.
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Back to sin(x) + n example...

KCDC distinguishes causal direction for all 1000 repetitions.
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How do we choose bins?

Sx→y =
1

|B|

|B|∑
i=1

(
||µy |x∈bi ||2 −

1

|B|

|B|∑
j=1

||µy |x∈bj ||2

)2

µy |x∈bj =
1

|bj |

|bj |∑
i=1

φ(yi )

Instead of using bins, computing weighted feature norms allows us to calculate a mean
feature norm for each data point and spares us choosing bins (important for extending
to multivariate case).
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Use weights instead

Sx→y =
1

n

n∑
i=1

(
||µy |xi ||2 −

1

n

n∑
j=1

||µy |xj ||2

)2

µy |xi =
n∑

i=1

wiφ(yi )

wi = f (||xi − xj ||2)

Instead of using bins, computing weighted feature norms allows us to calculate a mean
feature norm for each data point and spares us choosing bins (important for extending
to multivariate case).
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Back to sin(x) + n example...
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Kernel trick

Sx→y =
1

n

n∑
i=1

(
||µy |xi ||2 −

1

n

n∑
j=1

||µy |xj ||2

)2

µy |xi =
n∑

i=1

wiφ(yi ) ∈ Rn

wi = f (||xi − xj ||2)

Kernel trick replaces explicit mean feature vector with implicit calculation of
longer (possibly infinite) mean feature vector.

This allows a more detailed description of p(x |yi ) and p(y |xi ), (sufficient and
adequate number of features to properly represent distribution)
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Kernel trick

Sx→y =
1

n

n∑
i=1

(
||µy |xi ||Hy −

1

n

n∑
j=1

||µy |xj ||Hy

)2

µy |xi (y) =
n∑

i=1

wik(yi , y) ∈ Hy

wi = g(l(xi , xj))

k(y , y ′) kernel for output variable y and l(y , y ′) kernel for output variable.

Kernel trick replaces explicit mean feature vector with implicit calculation of
longer (possibly infinite) mean feature vector.

This allows a more detailed description of p(x |yi ) and p(y |xi ), (sufficient and
adequate number of features to properly represent distribution)
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Kernel trick [Schölkopf, 1998]

xi

xj

φ(xi)

φ(xj)

Similarity

measure
xi xj φ(xj)φ(xi)Κ(xi , xj) = 

φ(.)

φ(.)
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Our contribution

Up until now we have explored KCDC proposed by [Mitrovic et al, 2018] to infer
direction of causality for pairs of variables. Our contribution consists of:

1 Test KCDC on GRS pairs to validate its effectiveness in geosciences,

2 Extend KCDC to multivariate systems of variables, and

3 Test multivariate KCDC on multivariate simulated datasets.
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Experiment 1: Artificial Cause-Effect Pairs

100 data sets with 100 pairs of
points each

Additive noise models
y = f (x) + n with:

non-linear random function f
x , n ∼ U(−3, 3)

measure ccr auc

ANM 60.0 % 57.7 %
KCDC 91.0 % 95.7 %
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Cause-Effect Pairs database

Cause Effect Pairs (CEP) contains annotated 102 pairs1

Unidimensional and GRS variables only (30 out of 100)

id x y Cause
pair0001 Altitude Temperature →
pair0002 Altitude Precipitation →
pair0003 Longitude Temperature →
pair0004 Altitude Sunshine hours →
pair0020 Latitude Temperature →
pair0021 Longitude Precipitation →
pair0042 Day of the year Temperature →
pair0043 Temperature at t Temperature at t+1 →
pair0044 Pressure at t Pressure at t+1 →
pair0045 Sea level pressure at t Sea level pressure at t+1 →
pair0046 Relative humidity at t Relative humidity at t+1 →
pair0049 Ozone concentration Temperature ←
pair0050 Ozone concentration Temperature ←
pair0051 Ozone concentration Temperature ←
pair0072 Sunspots Global mean temperature →

id x y Cause
pair0073 CO2 emissions Energy use ←
pair0077 Temperature Solar radiation ←
pair0078 PPFD Net Ecosystem Productivity →
pair0079 Net Ecosystem Productivity Diffuse PPFDdif ←
pair0080 Net Ecosystem Productivity Diffuse PPFDdif ←
pair0081 Temperature Local CO2 flux, BE-Bra →
pair0082 Temperature Local CO2 flux, DE-Har →
pair0083 Temperature Local CO2 flux, US-PFa →
pair0087 Temperature Total snow →
pair0089 root decomposition Oct (grassl) root decomposition Oct (grassl) ←
pair0090 root decomposition Oct (forest) root decomposition Oct (forest) ←
pair0091 clay cont. in soil (forest) soil moisture →
pair0092 organic carbon in soil (forest) clay cont. in soil (forest) ←
pair0093 precipitation runoff →
pair0094 hour of day temperature →

1https://webdav.tuebingen.mpg.de/cause-effect/
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Experiment 2: Cause-Effect Pairs database

30 data sets with 126-10369
pairs of points each

max 100 points used

Non-linear, non-additive
examples included

measure ccr auc

ANM 60.0 % 55.7 %
KCDC 66.7 % 70.2 %
SHSIC - 70.0 %

SHSIC result from [Pérez-Suay
et al, 2019]
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Experiment 3: RTM Prosail Simulated Pairs

182 data sets with 1000 pairs of
points each

max 100 points used

causes consist of 7 biological
parameters

effects consist of reflectances for
13 different bands

measure ccr auc

ANM 62.6 % 60.2 %
KCDC 97.8 % 99.3 %
SHSIC - 65.0 %
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Experiment 4: RTM Prosail Emulator Pairs

182 data sets with 500,000 pairs
of points each

max 100 points used

causes consist of 7 biological
parameters

effects consist of reflectances for
13 different bands

measure ccr auc

ANM 58.8 % 60.4 %
KCDC 97.3 % 99.4 %
SHSIC - 80.0 %
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Extending KCDC to systems with more than two variables

To extend KCDC to DAGs with more than two nodes (higher dimensional systems) we
note that:

KCDC only serves to distinguish between DAGs in the same Markov Equivalence
class (those graphs with same set of conditional independencies).

The distribution of nodes with no parents is not taken into account since the
causal mechanism is encoded in the conditional distributions of nodes with
parents.
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Extending KCDC to systems with more than two variables

Taking this into account we write the KCDC of a general p-node DAG as:

KCDC (G) =
∑
i∈A

KCDC

(
p(xi |pa(xi ))

)
(1)

where

A is the set of nodes in the dag G that have at least one parent, and

pa(xi ) is the set of parents of node xi .
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An example

With previous definition:

KCDC (GA) = KCDC (p(y |x)) + KCDC (p(z |y))

KCDC (GB) = KCDC (p(x |y)) + KCDC (p(y |z))

KCDC (GC ) = KCDC (p(x |y)) + KCDC (p(z |y))

Lets see some experimental results for multi-variate KCDC.
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Experiment 5: Artificial Cause-Effect 3-tuples

100 datasets with 100 3-tuples
each

Additive noise models
z = f (x , y) + n with:

non-linear random function f
x , y , n ∼ U(−1, 1)

true causal structure one of 6
dags on the left.
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Experiment 5: Artificial Cause-Effect 3-tuples

Data for 1 of 100 datasets
plotted on left.

measure ccr edgeCCR

ANM 30.0 % 59.0 %
KCDC 73.0 % 88.3 %
Rnd 23.0 % 55.0 %
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Experiment 5: Artificial Cause-Effect 5-tuples

100 datasets with 100 5-tuples
each

Additive noise models
e = f (a, b, c, d) + n with:

non-linear random function f
a, b, c , d , n ∼ U(−1, 1)

true causal structure one of 32
dags on the left.
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Experiment 5: Artificial Cause-Effect 5-tuples

Data for 1 of 100 datasets
plotted on left.

measure ccr edgeCCR

ANM 8.0 % 67.3 %
KCDC 43.0 % 88.0 %
Rnd 6.0 % 63.3 %
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Take-home messages

State-of-the art method for observational causal inference

Physical models assessment

Many potential GRS apps to explore

Multivariate problems and cond. indep.
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Cause me: test your causal discovery algorithm online.
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