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Outlook

@ Infer causal relations between r.v. is challenging
@ Even more from pure observational data: no models involved, no ground truth!

@ In GRS, causality is key to understand the Earth’s system
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Outlook Clio KCDC Our work

Outline
@ Causal inference for instantaneous observations (CIIO)
@ Kernel Conditional Deviance for Causal Inference (KCDC)
© Our work:

o Experiments
e Developments to kernel deviance measures
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Overview of causal inference methods

A Granger causality B Nonlinear state-space methods
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Acks: Runge et al 2019
KCDC, the method studied here and ANMs, the method to which we will compare its

performance belong to group D.



Goal of Causal Inference for instantaneous observations

Given a system of p variables, with n observations available for each, learn underlying
causal Directed Acyclic Graph (DAG)
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Two step learning process

Learning a DAG can be separated into two steps:

- WaN

@ Learn conditional independencies (learn dag skeleton and colliders)

4

@ Learn directions (learn undetermined causal relations)

Work presented here focuses on second part of learning process.
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Our task for two and three variable examples

@ |
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@

@ Given that we know x and y dependent (x I{ y): choose between x — y or y — x
@ Given that we know x and z conditionally independent given y (x_LL z|y): choose
between x -y = z, Xy zorx <y — z.



KCDC

Idea behind KCDC

Following figure shows observations from model y = sin(x) + n where n ~ N(0,1)

In causal direction (x — y) complexity of p(y|x) does not depend on x whereas in
anticausal direction (y — x) complexity of p(x|y) varies more.
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How do we measure complexity?

KCDC

Our work

Use the spread of the norm of vector of expected features as a proxy for the complexity

of a set of distributions.
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@ Expected feature vector represents distribution if adequate features chosen.
@ Expected feature vector of similar distributions constrained to subspace of feature

space and so have similar norms.
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Our work

Illustration: gaussian mixtures

The higher the number of components in a gaussian mixture the more complex it is.

Number of components in Gaussian Mixture - Complexity
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Norm of mean vector can help us distinguish between distributions.
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Illustration: gaussian mixtures

Number of components in Gaussian Mixture ~ Complexity
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In this case we replace 2 hand-crafted features with 1000 random fourier features to
construct mean vector.
11/40



Outlook Clio KCDC Our work

Kernel Conditional Deviance for Causal Inference (KCDC)

Based on this idea [Mitrovic et al, 2018] introduced KCDC to infer direction of
causality for pairs of variables.

KCDC

|B|
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@ B = by, ..., by, are the bins that x is split into,
@ KCDC is the variance of mean feature norms, corresponding to different bins

@ Measure in both directions, direction of minimum variance is causal direction.
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Outlook

Back to sin(x) + n example...
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KCDC distinguishes causal direction for

all 1000 repetitions.
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Outlook

Back to sin(x) + n example...
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Again, we replace 2 hand-crafted features with 1000 random fourier features to

construct mean vector.
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Our work

Up until now we have explored KCDC proposed by [Mitrovic et al, 2018] to infer
direction of causality for pairs of variables. Our work involves developing kernel
deviance measures further, specifically:

1. Pairs of variables

a. Test KCDC on GRS pairs to validate its effectiveness in geosciences,
b. Alternate kernel deviance measures: describe complexity of p(y|x;) based on fiy|,, in
different ways.

c. Kernel deviance measures as regularizers (exploit multioutput regression interpretation of
CME)

d. Improve how fiy|, represents p(y|x;): new schemes for kernel hyperparameter tuning
and/or feature learning.

2. Higher Dimension dags:

a. Extend KCDC to multivariate systems of variables,
b. Test multivariate KCDC on multivariate simulated datasets.

15 /40
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Experiment 1: Artificial Cause-Effect Pairs

Note: for this and following experiments kernel parameters and regularization
parameter fixed (heuristically).

'._ - N - @ 100 data sets with 100 pairs of
P ‘ y = points each
% @ Non-additive noise models
; y = f(x, n) with:
e non-linear random function f
o x,n~ U(=3,3)

" measure | ccr auc
2 ANM  [66.0 %|70.1%
KCDC [84.0 %(84.9 %
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Cllo

Cause-Effect Pairs database

@ Cause Effect Pairs (CEP) contains annotated 102 pairs!
@ Unidimensional and GRS variables only (30 out of 100)

Our work

id X y Cause id X y Cause
pair0001 | Altitude Temperature — pair0073 [ CO2 emissions Energy use “—
pair0002 | Altitude Precipitation — pair0077 | Temperature Solar radiation <
pair0003 | Longitude Temperature — pair0078 | PPFD Net Ecosystem Productivity —
pair0004 | Altitude Sunshine hours — pair0079 | Net Ecosystem Productivity Diffuse PPFDdif —
pair0020 | Latitude Temperature — pair0080 | Net Ecosystem Productivity Diffuse PPFDdif —
pair0021 | Longitude Precipitation — pair0081 | Temperature Local CO2 flux, BE-Bra —
pair0042 | Day of the year Temperature — pair0082 | Temperature Local CO2 flux, DE-Har —
pair0043 | Temperature at t Temperature at t+1 — pair0083 | Temperature Local CO2 flux, US-PFa —
pair0044 | Pressure at t Pressure at t+1 — pair0087 | Temperature Total snow —
pair0045 | Sea level pressure at t | Sea level pressure at t+1 | — pair0089 | root decomposition Oct (grassl) | root decomposition Oct (grassl) | «—
pair0046 | Relative humidity at t | Relative humidity at t+1 | — pair0090 | root decomposition Oct (forest) | root decomposition Oct (forest) | «—
pair0049 | Ozone concentration | Temperature +— pair0091 | clay cont. in soil (forest) soil moisture —
pair0050 | Ozone concentration | Temperature — pair0092 | organic carbon in soil (forest) clay cont. in soil (forest) “—
pair0051 | Ozone concentration | Temperature — pair0093 | precipitation runoff —
pair0072 | Sunspots Global mean temperature | — pair0094 | hour of day temperature —

'https://webdav.tuebingen.

mpg .de/cause-effect/
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Experiment 2: Cause-Effect Pairs database

KCDC

30 data sets with 126-10369

pairs of points each

max 100 points used

Non-linear, non-additive
examples included

measure | ccr auc
ANM  [60.0 %|55.7 %
KCDC [66.7 %(70.2 %
SHSIC |- 70.0 %

Our work

SHSIC result from [Pérez-Suay
et al, 2019]
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Experiment 3: RTM Prosail Simulated Pairs

Cllo

KCDC

Our work

182 data sets with 1000 pairs of
points each

max 100 points used

causes consist of 7 biological
parameters

effects consist of reflectances for

13 different bands

measure ccr auc
ANM  162.6 %(60.2 %
KCDC [97.8 %(99.3 %
SHSIC |- 65.0 %
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Experiment 4: RTM Prosail Emulator Pairs

@ 182 data sets with 500,000 pairs
of points each

B s R0 2 B SR
e oo @ max 100 points used
o A - ‘ —1 @ causes consist of 7 biological
R L L parameters
" - Mf g | i 0 1 i o effects consist of reflectances for
i — — L SRR 13 different bands
- i — ~ . o ae - — . measure|ccr auc

ANM  [58.8 %(60.4 %
KCDC (97.3 %|99.4 %
SHSIC 80.0 %
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Alternate kernel deviance measures: recall KCDC and distribution of the norm of CMEs

KCDC may have issues of scale for clustered data or data with outliers. Additionally
we have seen that distribution of norms of CMEs is often far from gaussian, so
variance may not be a good descriptor.
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Cllo KCDC

Outlook
Alternate kernel deviance measures: KCRDC
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Alternate kernel deviance measures: KCMC
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Alternate kernel deviance measures: KCSC
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Alternate kernel deviance measures: KCCC

A

F I :
f(V)|X]
Ay 60
§7 0 .
il ol J
(M H
()l
KCCC
o /Vx,uy\X:xVXMaX:deX S = diag(Ro R) € R™ SKeC = H(zi;:)

25 /40



Alternate kernel deviance measures: KCMC and KCRDC a toy example

Data from y = sin(x) * n with n ~ N(0, 1)

26 /40
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Alternate kernel deviance measures: KCMC and KCRDC a toy example

uonnadey

Distribution of mean

92% of repetitions
vector norm

Hikss correctly classified
"

Distribution of variance
of mean vector norm
(KCDC)

KCDC doesn’t do aswell as with additive noise in this case. Observe higher mean level

for causal distributions.
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Alternate kernel deviance measures: KCMC and KCRDC a toy example
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Alternate kernel deviance measures: KCMC and KCRDC a toy example
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Kernel deviance measures as regularizers: causal regularizers?

@ We can express all kernel deviance measures in terms of the « kernel regression
parameter.

We can simply replace L2 regularizer and optimize loss.

In causal direction, kernel deviance restriction should not hurt accuracy too
much? If so we can use regression loss as causal predictor.

For KCMC and KCSC we obtain a convex loss function!

No experiments yet

LEME (x,y, 0, A) = (0,0]) — 2(Kyad]) + (o KKya)
1 1
+an(S(Keaa K = 17 Kaaa K1)

VQEKCMC(Xa y,Q, )\) =0= &KCMC — (KX(I + )\H))flq)y
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Choosing/learning H,

Squared error across different 7, not comparable. Work so far here at Oxford has
involved using Noise Contratative Estimation as in [J. Ton et al 2019] to choose
appropriate H,.

dist: sinxTimesNoise , direction: y ¢ x
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Example of Noise Contrastative Estimation for y = sin(x) * n in anti-causal direction.
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Choosing/learning H,
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RKHS
multRbf
ot

I3
!
',
B :
.
[ ]
.
.
aSIONSN|dXUIS
BSIONS!

@sioNsawILXuIS

BSIONSAWILXUIS

x cy y_e x
RKHS g
dist multRbf rbf §| ==factor(cond)
= L]
sinxPlusNoise 100 100 = = ?
sinxTimesNoise 73 90 Eo 2

9 gsjoNsawWI XIS

For the y = sin(x) * n example the loss using the rbf #, is lower than if we use a
direct sum rbf H,. This corresponds with a better KCDC performance suggesting we
can use NCE to supervise learning/tuning of H.,. 32/40
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Extending KCDC to systems with more than two variables

Markov Markov
Equivalence Equivalence
class 1 class 2

® @ YO
O—@

To extend KCDC to DAGs with more than two nodes (higher dimensional systems) we
note that:
@ KCDC only serves to distinguish between DAGs in the same Markov Equivalence
class (those graphs with same set of conditional independencies).

@ The distribution of nodes with no parents is not taken into account since the
causal mechanism is encoded in the conditional distributions of nodes with

parents.

33/40
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Extending KCDC to systems with more than two variables

Taking this into account we write the KCDC of a general p-node DAG as:

KCDC(G) = ZKCDC( x,|pa(x,-))> (3)

ieA
where

@ A is the set of nodes in the dag G that have at least one parent, and

@ pa(x;) is the set of parents of node x;.

34 /40
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An example

Graph A Graph B Graph C

@ @

With previous definition:
o KCDC(Ga) = KCDC(p(y|x)) + KCDC(p(z]y))
® KCDC(Gg) = KCDC(p(xly)) + KCDC(p(y|2))
@ KCDC(Gc) = KCDC(p(xly)) + KCDC(p(zly))

Lets see some experimental results for multi-variate KCDC.

35/40
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Experiment 5: Artificial Cause-Effect 3-tuples

(3) (2) (3) @ 100 datasets with 100 3-tuples
N Ny — each
(2) (3) (1)
N N TNV @ Non-additive noise models
(1) (1) (2) z = f(x,y,n) with:
(1”‘2 g§> g?) e non-linear random function f
T T T e x,y,n~ U(-1,1)
() 12 (22
v N N @ true causal structure one of 6
(2) (3) (3) dags on the left.
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Experiment 5: Artificial Cause-Effect 3-tuples

@ Data for 1 of 100 datasets
plotted on left.

measure|ccr edgeCCR
ANM  18.0 %|48.0 %
KCDC (38.0 %|67.0 %
Rnd 23.0 %(55.0 %

37/40
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Experiment 5: Artificial Cause-Effect 5-tuples

@ 100 datasets with 100 5-tuples
each
@ Non-additive noise models
e =f(a,b,c,n,) with:
e non-linear random function f
e a,b,c,d,n~ U(-1,1)
@ true causal structure one of 32
dags on the left.

38 /40



Experiment 5: Artificial Cause-Effect 5-tuples

@ Data for 1 of 100 datasets
~ plotted on left.
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