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B emiliano.diaz@uv.es | m http://isp.uv.es

1 / 40



Outlook CIIO KCDC Our work

Outlook

Infer causal relations between r.v. is challenging

Even more from pure observational data: no models involved, no ground truth!

In GRS, causality is key to understand the Earth’s system
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Outline

1 Causal inference for instantaneous observations (CIIO)

2 Kernel Conditional Deviance for Causal Inference (KCDC)

3 Our work:

Experiments
Developments to kernel deviance measures
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Overview of causal inference methods

A. Multivariate granger
causality tests

B. Nonlinear state-space
method CCM

C. Causal network learning
algorithms (conditional
independendence testing)

D. Structural Causal models

KCDC, the method studied here and ANMs, the method to which we will compare its
performance belong to group D.
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Goal of Causal Inference for instantaneous observations

Given a system of p variables, with n observations available for each, learn underlying
causal Directed Acyclic Graph (DAG)
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Two step learning process

Learning a DAG can be separated into two steps:

1 Learn conditional independencies (learn dag skeleton and colliders)

2 Learn directions (learn undetermined causal relations)

Work presented here focuses on second part of learning process.
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Our task for two and three variable examples

Given that we know x and y dependent (x 6⊥⊥ y): choose between x → y or y → x
Given that we know x and z conditionally independent given y (x⊥⊥ z |y): choose
between x → y → z , x ← y ← z or x ← y → z .
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Idea behind KCDC

Following figure shows observations from model y = sin(x) + n where n ∼ N(0, 1)

In causal direction (x → y) complexity of p(y |x) does not depend on x whereas in
anticausal direction (y → x) complexity of p(x |y) varies more.
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How do we measure complexity?

Use the spread of the norm of vector of expected features as a proxy for the complexity
of a set of distributions.

µ = Eφ(Y ) = E


f (Y )
Y 2

sin(Y )
...

g(Y )



Intuition:
1 Expected feature vector represents distribution if adequate features chosen.
2 Expected feature vector of similar distributions constrained to subspace of feature

space and so have similar norms. 9 / 40
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Illustration: gaussian mixtures

The higher the number of components in a gaussian mixture the more complex it is.

Norm of mean vector can help us distinguish between distributions.
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Illustration: gaussian mixtures

In this case we replace 2 hand-crafted features with 1000 random fourier features to
construct mean vector.
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Kernel Conditional Deviance for Causal Inference (KCDC)

Based on this idea [Mitrovic et al, 2018] introduced KCDC to infer direction of
causality for pairs of variables.

KCDC

Sx→y =
1

|B|

|B|∑
i=1

(
||µy|x∈bi ||2 −

1

|B|

|B|∑
j=1

||µy|x∈bj ||2

)2

B = b1, ..., bm are the bins that x is split into,

KCDC is the variance of mean feature norms, corresponding to different bins

Measure in both directions, direction of minimum variance is causal direction.
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Back to sin(x) + n example...

KCDC distinguishes causal direction for all 1000 repetitions.
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Back to sin(x) + n example...

Again, we replace 2 hand-crafted features with 1000 random fourier features to
construct mean vector.
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Our work

Up until now we have explored KCDC proposed by [Mitrovic et al, 2018] to infer
direction of causality for pairs of variables. Our work involves developing kernel
deviance measures further, specifically:

1. Pairs of variables

a. Test KCDC on GRS pairs to validate its effectiveness in geosciences,
b. Alternate kernel deviance measures: describe complexity of p(y |xi ) based on µ̂Y |xi in

different ways.
c. Kernel deviance measures as regularizers (exploit multioutput regression interpretation of

CME)
d. Improve how µ̂Y |xi represents p(y |xi ): new schemes for kernel hyperparameter tuning

and/or feature learning.

2. Higher Dimension dags:

a. Extend KCDC to multivariate systems of variables,
b. Test multivariate KCDC on multivariate simulated datasets.
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Experiment 1: Artificial Cause-Effect Pairs

Note: for this and following experiments kernel parameters and regularization
parameter fixed (heuristically).

100 data sets with 100 pairs of
points each

Non-additive noise models
y = f (x , n) with:

non-linear random function f
x , n ∼ U(−3, 3)

measure ccr auc

ANM 66.0 % 70.1%
KCDC 84.0 % 84.9 %
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Cause-Effect Pairs database

Cause Effect Pairs (CEP) contains annotated 102 pairs1

Unidimensional and GRS variables only (30 out of 100)

id x y Cause
pair0001 Altitude Temperature →
pair0002 Altitude Precipitation →
pair0003 Longitude Temperature →
pair0004 Altitude Sunshine hours →
pair0020 Latitude Temperature →
pair0021 Longitude Precipitation →
pair0042 Day of the year Temperature →
pair0043 Temperature at t Temperature at t+1 →
pair0044 Pressure at t Pressure at t+1 →
pair0045 Sea level pressure at t Sea level pressure at t+1 →
pair0046 Relative humidity at t Relative humidity at t+1 →
pair0049 Ozone concentration Temperature ←
pair0050 Ozone concentration Temperature ←
pair0051 Ozone concentration Temperature ←
pair0072 Sunspots Global mean temperature →

id x y Cause
pair0073 CO2 emissions Energy use ←
pair0077 Temperature Solar radiation ←
pair0078 PPFD Net Ecosystem Productivity →
pair0079 Net Ecosystem Productivity Diffuse PPFDdif ←
pair0080 Net Ecosystem Productivity Diffuse PPFDdif ←
pair0081 Temperature Local CO2 flux, BE-Bra →
pair0082 Temperature Local CO2 flux, DE-Har →
pair0083 Temperature Local CO2 flux, US-PFa →
pair0087 Temperature Total snow →
pair0089 root decomposition Oct (grassl) root decomposition Oct (grassl) ←
pair0090 root decomposition Oct (forest) root decomposition Oct (forest) ←
pair0091 clay cont. in soil (forest) soil moisture →
pair0092 organic carbon in soil (forest) clay cont. in soil (forest) ←
pair0093 precipitation runoff →
pair0094 hour of day temperature →

1https://webdav.tuebingen.mpg.de/cause-effect/
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Experiment 2: Cause-Effect Pairs database

30 data sets with 126-10369
pairs of points each

max 100 points used

Non-linear, non-additive
examples included

measure ccr auc

ANM 60.0 % 55.7 %
KCDC 66.7 % 70.2 %
SHSIC - 70.0 %

SHSIC result from [Pérez-Suay
et al, 2019]
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Experiment 3: RTM Prosail Simulated Pairs

182 data sets with 1000 pairs of
points each

max 100 points used

causes consist of 7 biological
parameters

effects consist of reflectances for
13 different bands

measure ccr auc

ANM 62.6 % 60.2 %
KCDC 97.8 % 99.3 %
SHSIC - 65.0 %
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Experiment 4: RTM Prosail Emulator Pairs

182 data sets with 500,000 pairs
of points each

max 100 points used

causes consist of 7 biological
parameters

effects consist of reflectances for
13 different bands

measure ccr auc

ANM 58.8 % 60.4 %
KCDC 97.3 % 99.4 %
SHSIC - 80.0 %
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Alternate kernel deviance measures: recall KCDC and distribution of the norm of CMEs

KCDC may have issues of scale for clustered data or data with outliers. Additionally
we have seen that distribution of norms of CMEs is often far from gaussian, so
variance may not be a good descriptor.

KCDC

SKCDC
x→y = V̂X [||µY |X=x(y)||Hk ] =

1

n

n∑
i=1

(
||µ̂Y |X=xi (y)||Hk −

1

n

n∑
j=1

||µ̂Y |X=xj (y)||Hk

)2
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Alternate kernel deviance measures: KCRDC

KCRDC

SKCRDC
x→y =

√
V̂X [||µY |X=x(y)||Hk ]

ÊX [||µY |X=x(y)||Hk ]
=

√
SKCDC
x→y

ÊX [||µY |X=x(y)||Hk ] 22 / 40
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Alternate kernel deviance measures: KCMC

KCMC

SKCMC
x→y = ÊX

[∣∣∣∣∣∣µY |X=x(y)− EX

[
µY |X=x(y)

]∣∣∣∣∣∣2
Hk

]
=

1

n

n∑
i=1

∣∣∣∣∣∣µ̂Y |X=xi (y)−
1

n

n∑
j=1

µ̂Y |X=xj (y)
∣∣∣∣∣∣2
Hk
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Alternate kernel deviance measures: KCSC

KCSC

SKCSC
x→y = EYEX

[∣∣∣∣∣∣∇xµY |X=x(y)
∣∣∣∣∣∣2
Hk

]
(1)
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Alternate kernel deviance measures: KCCC

KCCC

R =

∫
∇xµY |X=x∇xµ

T
Y |X=xdPx S = diag(R ◦ R) ∈ Rm SKCCC

x→y = H( S̃︸︷︷︸
∈Rm

)
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Alternate kernel deviance measures: KCMC and KCRDC a toy example

Data from y = sin(x) ∗ n with n ∼ N(0, 1)
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Alternate kernel deviance measures: KCMC and KCRDC a toy example

KCDC doesn’t do aswell as with additive noise in this case. Observe higher mean level
for causal distributions.
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Alternate kernel deviance measures: KCMC and KCRDC a toy example
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Alternate kernel deviance measures: KCMC and KCRDC a toy example

29 / 40



Outlook CIIO KCDC Our work

Kernel deviance measures as regularizers: causal regularizers?

We can express all kernel deviance measures in terms of the α kernel regression
parameter.
We can simply replace L2 regularizer and optimize loss.
In causal direction, kernel deviance restriction should not hurt accuracy too
much? If so we can use regression loss as causal predictor.
For KCMC and KCSC we obtain a convex loss function!
No experiments yet

LKCMC (x, y, α, λ) = (ΦyΦT
y )− 2(KxαΦT

y ) + (αTKxKxα)

+ λn
(1

n
(Kxαα

TKx)− 1

n2
1TKxαα

TKx1
)

∇αLKCMC (x, y, α, λ) = 0⇒ α̂KCMC =
(
Kx(I + λH)

)−1
Φy

(2)
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Choosing/learning Hy

Squared error across different Hy not comparable. Work so far here at Oxford has
involved using Noise Contratative Estimation as in [J. Ton et al 2019] to choose
appropriate Hy .

Example of Noise Contrastative Estimation for y = sin(x) ∗ n in anti-causal direction.
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Choosing/learning Hy

For the y = sin(x) ∗ n example the loss using the rbf Hy is lower than if we use a
direct sum rbf Hy . This corresponds with a better KCDC performance suggesting we
can use NCE to supervise learning/tuning of Hy . 32 / 40
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Extending KCDC to systems with more than two variables

To extend KCDC to DAGs with more than two nodes (higher dimensional systems) we
note that:

KCDC only serves to distinguish between DAGs in the same Markov Equivalence
class (those graphs with same set of conditional independencies).

The distribution of nodes with no parents is not taken into account since the
causal mechanism is encoded in the conditional distributions of nodes with
parents.
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Extending KCDC to systems with more than two variables

Taking this into account we write the KCDC of a general p-node DAG as:

KCDC (G) =
∑
i∈A

KCDC

(
p(xi |pa(xi ))

)
(3)

where

A is the set of nodes in the dag G that have at least one parent, and

pa(xi ) is the set of parents of node xi .
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An example

With previous definition:

KCDC (GA) = KCDC (p(y |x)) + KCDC (p(z |y))

KCDC (GB) = KCDC (p(x |y)) + KCDC (p(y |z))

KCDC (GC ) = KCDC (p(x |y)) + KCDC (p(z |y))

Lets see some experimental results for multi-variate KCDC.
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Experiment 5: Artificial Cause-Effect 3-tuples

100 datasets with 100 3-tuples
each

Non-additive noise models
z = f (x , y , n) with:

non-linear random function f
x , y , n ∼ U(−1, 1)

true causal structure one of 6
dags on the left.
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Experiment 5: Artificial Cause-Effect 3-tuples

Data for 1 of 100 datasets
plotted on left.

measure ccr edgeCCR

ANM 18.0 % 48.0 %
KCDC 38.0 % 67.0 %
Rnd 23.0 % 55.0 %
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Experiment 5: Artificial Cause-Effect 5-tuples

100 datasets with 100 5-tuples
each

Non-additive noise models
e = f (a, b, c, n, ) with:

non-linear random function f
a, b, c , d , n ∼ U(−1, 1)

true causal structure one of 32
dags on the left.
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Experiment 5: Artificial Cause-Effect 5-tuples

Data for 1 of 100 datasets
plotted on left.

measure ccr edgeCCR

ANM 8.0 % 67.3 %
KCDC 23.0 % 80 %
Rnd 6.0 % 63.3 %
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Pérez-Suay and Camps-Valls, ‘Sensitivity Maps of the Hilbert-Schmidt
Independence Criterion,’ Applied Soft Computing, 2017.

Mooij et al., ‘Distinguishing cause from effect using observational data,’ JMLR,
17(1), 2016.

Gretton et al., ‘Measuring statistical dependence with Hilbert-Schmidt norms,’
ALT, 2005

Hoyer et al., ‘Nonlinear causal discovery with additive noise models,’ NIPS 2008.

Camps-Valls, Mooij and Schölkopf, ‘Remote sensing feature selection by kernel
dependence measures,’ IEEE-GRSL 2010

40 / 40


	Outlook
	Causal Inference for instantaneous observations
	KCDC
	Our work

