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Goal of Causal Inference for instantaneous observations

Given a system of p variables, with n observations available for each, learn underlying
causal Directed Acyclic Graph (DAG)
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Two step learning process

Learning a DAG can be separated into two steps:

1 Learn conditional independencies (learn dag skeleton and colliders)

2 Learn directions (learn undetermined causal relations)

Work presented here focuses on second part of learning process.
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Our task for two and three variable examples

Given that we know x and y dependent (x 6⊥⊥ y): choose between x → y or y → x
Given that we know x and z conditionally independent given y (x⊥⊥ z |y): choose
between x → y → z , x ← y ← z or x ← y → z .
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Idea behind KCDC

Following figure shows observations from model y = sin(x) + n where n ∼ N(0, 1)

In causal direction (x → y) complexity of p(y |x) does not depend on x whereas in
anticausal direction (y → x) complexity of p(x |y) varies more.

5 / 15



Outlook CIIO KCDC

How do we measure complexity?

Use the spread of the norm of vector of expected features as a proxy for the complexity
of a set of distributions.

µ = Eφ(Y ) = E


f (Y )
Y 2

sin(Y )
...

g(Y )



Intuition:
1 Expected feature vector represents distribution if adequate features chosen.
2 Expected feature vector of similar distributions constrained to subspace of feature

space and so have similar norms. 6 / 15
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Illustration: gaussian mixtures

The higher the number of components in a gaussian mixture the more complex it is.

Norm of mean vector can help us distinguish between distributions.
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Back to sin(x) + n example...

KCDC distinguishes causal direction for all 1000 repetitions.
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Experiment 3: RTM Prosail Simulated Pairs

182 data sets with 1000 pairs of
points each

max 100 points used

causes consist of 7 biological
parameters

effects consist of reflectances for
13 different bands

measure ccr auc

ANM 62.6 % 60.2 %
KCDC 97.8 % 99.3 %
SHSIC - 65.0 %
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Extending KCDC to systems with more than two variables

To extend KCDC to DAGs with more than two nodes (higher dimensional systems) we
note that:

KCDC only serves to distinguish between DAGs in the same Markov Equivalence
class (those graphs with same set of conditional independencies).

The distribution of nodes with no parents is not taken into account since the
causal mechanism is encoded in the conditional distributions of nodes with
parents.
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Extending KCDC to systems with more than two variables

Taking this into account we write the KCDC of a general p-node DAG as:

KCDC (G) =
∑
i∈A

KCDC

(
p(xi |pa(xi ))

)
(1)

where

A is the set of nodes in the dag G that have at least one parent, and

pa(xi ) is the set of parents of node xi .
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An example

With previous definition:

KCDC (GA) = KCDC (p(y |x)) + KCDC (p(z |y))

KCDC (GB) = KCDC (p(x |y)) + KCDC (p(y |z))

KCDC (GC ) = KCDC (p(x |y)) + KCDC (p(z |y))

Lets see some experimental results for multi-variate KCDC.
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Experiment 5: Artificial Cause-Effect 5-tuples

100 datasets with 100 5-tuples
each

Non-additive noise models
e = f (a, b, c, n, ) with:

non-linear random function f
a, b, c , d , n ∼ U(−1, 1)

true causal structure one of 32
dags on the left.

13 / 15



Outlook CIIO KCDC

Experiment 5: Artificial Cause-Effect 5-tuples

Data for 1 of 100 datasets
plotted on left.

measure ccr edgeCCR

ANM 8.0 % 67.3 %
KCDC 23.0 % 80 %
Rnd 6.0 % 63.3 %

14 / 15



Outlook CIIO KCDC

References

Mitrovic et al., ‘Causal Inference via Kernel Deviance Measures,’ NIPS 2018.

Ton et al., ‘Noise contrastative estimation for meta learning using kernel mean
embeddings’ AISTATS 2019 submitted.
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