PhD Thesis

Towards causal discovery for

Earth system sciences

PhD Program “Enginyeria Electronica” (3131)

Emiliano Diaz Salas Porras
Universitat de Valencia

Advisors: Gustau Camps-Valls, Gherardo Varando,
Adrian Péerez-Suay

o00®
...........
........

.....

NvNiaess
VNIVERSITAT
DGVALENCIA



Outline

1. Causal discovery in Earth system sciences
2. Bivariate causal discovery for Non-additive data
a.  PDF approach - model conditionals
b.  FCM approach - latent noise estimation
3. Spatial maps of causal relations
4. Natural interventions

h.  Conclusions



Causal discovery for Earth
system sciences



Causal discovery in Earth System Sciences

Causal discovery pipeline
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Challenges

1. Data: complex structure, dependencies, distributions, high dimensional, causally
insufficient, measurement error.

2. Scientific: Integratin% scientific knowledge into causal discovery
g. data and physical simulation models.

3. Statistical:
a. non-linear conditional independence tests
b. extrapolation capabilities (failed promise of generalizability)

4. Causal:
a. discrete optimization problem,
b. causal representation learning,



Goals

New causal discovery methods for Earth system sciences:

1. Asymmetry bivariate causal discovery for Earth system sciences data:
a. non-additive data and (weakly) causally-insufficient for i.i.d data
b. structured data

2. Causally heterogenous data:
a. different interventions have occurred, not fully identified
b. latent causal representations, circumvent the large discrete space. incorporate physical
knowledge



Bivariate causal discovery
for non-additive data



Causal insufficiency widespread in Earth system sciences

Non-additive data important for Earth system science

1. weak form of non causal sufficiency

GPP

2. can generate structured data e.g. spatial, temporal

GPP
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|s causal identifiability possible?
FCM : Additive Noise model :

y=flz) + 2

Result: (Hoyer et al. 2009)

Exceptions: eg. linear gaussian




|s causal identifiability possible?

FCM : Post non-linear model :

y = g(f(z) + 2)

Result: (Zhang and Hyvarinen, 2009)

Exceptions: eg. noise z generalized mixture
of exponentials, f(x) two-sided, asymptotically
exponential, f,g strictly monotonic
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|s causal identifiability possible?

FCM : Location scale model :

y = f(z)+g(x)*z

Result: (Immer et al. 2023)

Exceptions: eg. noise z gaussian, x
log-mix-rational log, f and g functions of
polynomials of degree 2 or less.
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|s causal identifiability possible?

FCM : general modular model :

y:f(:c,z)

Sesutt Principle:
Independence of cause and mechanism (ICM)
(Daniusis et al, 2010)
Equivalent to minimal complexity factorization

Exceptions: Both directions algorithmicall
independent. ie both factorizations have equal
complexity
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Independence of cause and mechanism (ICM) @anusis etal, 2010

[

""'h /
i
|l

— - modularity assumption

- p(z) algorithmically independent
from p(y|z)

- ienoinfo about p(ylz) in p(z)
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Causal inference in Geosciences with multidimensional kernel deviance measures
Emiliano Diaz Salas Porras, Adrian Perez Suay, Valero Laparra, and Gustau Camps-Valls
EGU General Assembly, Geophysical Research Abstracts, Vol. 21 2019x



KCDC mitrovic etal, 2018): USe conditional mean embedding (CME)
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Represent »(ylz) using (possibly infinite) moments estimated implicitly (CME) or explicitly
(multi-output regression)

Mitrovic et al, “Causal Inference via Kernel Deviance Measures”, NeurlPS 2018 15



KCMC (oiazet a1 2019): change in complexity
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e Norm of differences instead of differences in the norm
e More info about complexity of change and not only change in complexity

Diaz et al. “Causal inference in Geosciences with multidimensional kernel deviance measures” EGU General Assembly, Geophysical Research Abstracts, Vol. 212019 16



How well does the CME represent »(ylz)?

e CME X - -
fry|x=:(y) = a(x) ky =1, Brk,

e Multi output regression on kernel similarities &,
F(X) = L(L+nA) 'K = LB\K

e Multi output regression equivalent to estimating CME and evaluating at data points.
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How well does the CME represent »(ylz)?

e (ME
fry|x=2(y) = a(z) 'ky = 1; Byk,

e [wo ingredients:
o (Output: which moments to select to represent
o Input: which features to select to estimate those moments
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Input feature selection: Pareto front of fit and complexity

13-

e (different hyperparameters result
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Output feature: noise contrastive estimation (NCE)
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generate real pairs with p(z) and p(ylz)
generate fake pairs with marginals p(z)
and p(y)
discriminate between two by using CME

based similarity score:
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Data: artificially generated
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Data: artificially generated
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Data: physical model and real-world
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Results

Causal measure

D ANM|KCDC mff I\NASE Benchmarks

sin(x) +n| 1 1 1 1

sin(x) *xn [096 | 0.68 | 1 | 1 1. Additive noise models (ANM)
f@)+n | 1 | 0.45 |0.98[0.99 2 KCDC

f(x)*n [ 0.74 | 0.88 [0.96]0.96 : | o
F(z,n) 0.68 | 0.88 |0.81] 0.9 3. KCMC- median heuristic
f2(z) +n [0.57 | 042 |0.62]0.82 4 KCMC- NCE

g(z,n) 06 1081 | 1] 1
TCEP 0.57 | 0.65 |0.71|0.66




Learning latent functions for causal discovery
Diaz, A., Johnson, J.E., Varando, G. and Camps-Valls, G.
Machine Learning: Science and Technology |IOP Science 2023



Taking a step back: modeling the inducing FCM

Yy = f(.’B,Z)

Latent Noise approach
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An extended ICM assumption

For a data generating mechanism v = f(z, 2) we make the following assumptions, following
(Stegle, et al 2010)

Deterministic process
Exogenous noise 2
Gaussian noise 2
Algorithmic independence

27



Method idea: estimate noise, approximate with ANM

e Adapt bayesian model selection approach (epistegie etal, 2010) which uses ICM, to frequentist,
kernel non parametric

[ Why?
o Doesn't work very well for certain classes
o Approach is nice since you get more ingredients from the FCM
o |f we obtain point-wise estimates of z, can turn into additive noise model: good
methods in this case

28



Enforce soft assumptions
Advantages
e T[raverse model space more efficiently (asymmetry generation vs optimality)
e Rank relative importance of assumptions
e Relaxing determinism assumption: non-additvity as causal signal:
o model misspecification (anti causal direction)

o estimation error (both directions)
o asymmetry assumption: model misspecification generates more non-additivity

29



Loss function for finding z penalizes assumption violations

L(Z) =In(nHSIC(X,,Rs—y)) + (In (MSE(R;—y))
+nln (RHSIC(X, £)) + vin (SMMD?,(Z2))

where: Deterministic process
Xo i ={(2i,2i) }iy

Rey = 1{yi — f(@i,2:) }7y
@: f((D,Z) = Z?:l aik((waz)1 (xiazz')) S sz
a= (K, +n\)ly
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Loss function for finding z penalizes assumption violations

L(Z) =In(nHSIC(X,,Rz—y)) + (In (MSE(R;—y))
+nln (RHSIC(X, £)) t vin (SMMD?,(£2))

where: Exogenous noise
Xo i ={(2i,2i) }iy

Rey = 1{yi — f(@i,2:) }7y
{/: f(iI?,Z) - Z?:l aik((waz)1 ($iazz’)) S Ha;z
a= (K, +n\)ly
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Loss function for finding z penalizes assumption violations

L(Z) =In(nHSIC(X,,Rz—y)) + (In (MSE(R;—y))
+nln (RHSIC(X, £)) + vIn (SMMD?,(Z2))

where: (3aussian noise
Xo i ={(2i,2i) }iy

Rey = 1{yi — f(@i,2:) }7y
@: f(iI?,Z) - Z?:l aik((wﬁz)7 (a:iazz')) S sz
a= (K, +n\)ly
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1D Data
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LNc method’s accuracy improves with non-additivity

all

1.00 =

0.75 =

0.50 - — ANMh — LNc

AUC

025 =

0.00 =
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Combining LNc and ANMh obtains SOTA performance

LNc-ANMh
SIM




Relative importance of assumptions

contribution to accuracy

MSE(R. ;) nHSIC(X, Z) nHSIC(X,,R. ) SMMDJ?V,(Z)
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e Additive residual assumption only one that needs to be implemented strictly.



Time series extension

D/(2) = 1(Z) + n (WHSIC(R, T))

e (onditioning on x and z removes temporal structure of time-series y
e Regularizer to favor solutions z which result in residuals without temporal structure
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Time series data
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LNc method’s accuracy improves with non-additivity

all
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Inferring causal relations from observational long-term carbon and water fluxes records
Diaz, E.,Adsuara, J.E., Moreno-Martinez, A., Piles, M. and Camps-Valls, G.
Scientific Reports 12 :1610, 2022



Convergent cross mapping (COM) sugiaratal 2012

Context:
e (ausal inference method for time series/dynamic systems

Intended for data from:
e [Deterministic systems
e No strong forcings
o No “instantaneous” processes

A Large-scale time series dataset

B causal discovery

1
Time lags X

41



ODE equations encode causal relations

N, ata
system % CCM
x' = oy —ox

y = A PR %
z' = = xy — Pz @ causality

e Xcauses Y [FF X's equation expresses its dynamics in terms of Y s state
e (CM: circumvent the ODE

42



Takens’ theorem e 198y - informal implications

x(t) = [X() X(t-1) X(t-27)]

“shadow manifold” using time series of one
variable retains topology of original Manifold:
points close on M are also close on Mx and My

CCM in a nutshell: two variables causally related
if you can rebuild the state-space from the
variables’ (embedded/lagged) individual time
Series

43



Strong unidirectional forcing
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e (CM wrongly infers that GPP causes Radiation because of strong unidirectional forcing
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Our contribution - Robust CCM (RCCM)

e Detect strong “instantaneous” unidirectional forcing using extended CCM

e Information-Geometric Causal Inference (IGCI) (anzing et al, 2012):
o method for instantaneous causal relationships.
o works well in deterministic data: compatible with CCM.

e RCCM: CCM + IGCI

o Systematic robust estimation of embedding dimension E:
o pool data across time
o apply algorithm “pixel-wise™ to obtain spatial maps of causality

45



RCCM to understand carbon and water cycle spatlal patterns

Carbon
"‘“’"""‘" ﬂuxes
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Spatio-temporal data cubes
e farth SySth Data Lab (Mahecha et al., 2020)
o b biosphere & atmosphere global gridded products
o GPP. SM, Tair, LH, Precip, Rad
e 3-daily temporal resolution

o 2001-201

e (.0833 degrees spatial resolution
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Radiation and photosynthesis

ide [degrees|

Latit1

de [degrees]

Latitu

RCCM mostly removes
GPP— Rad inference

GPP — Rad in tropical and
cloudy regions: increase in
GPP increases Latent Heat,
moistens atmosphere
affecting cloud cover
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Photosynthesis, temperature & soil moisture

~ \ -/GPP N
LM Tair

Strength of forcing over Soil Moisture

GPP i Strength of forcing over Air Temperature
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Photosynthesis, temperature & soil moisture

Strength of forcing over Air Temperature

GPP GPP drives Tair in many areas
(green).

e (old ecosystems: changes in
land surface albedo such as
snow/ice & vegetation.

Latitude |deg]

SM.

Longitude [deg]
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Photosynthesis, temperature & soil moisture

Strength of forcing over Air Temperature

GPP GPP drives Tair in many areas
(green).

e Warmer and drier
ecosystems: turbulent energy
fluxes (enhancement of latent
exchange and subsequent
cooling effect)

Latitude |deg]

SM.

Longitude [deg]
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Photosynthesis, temperature & soil moisture

Strength of forcing over Soil Moisture

GPP

Latitude [deg]

-150 -100 -50 0 50 100 150
Longitude [deg|

e SM mostly controlled by
Tair (red)
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Photosynthesis, temperature & soil moisture

Strength of forcing over Soil Moisture

GPP

Latitude [deg]

Longitude [deg]

e SMcontrolled by GPP
(green) in water-limited
regions
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Photosynthesis, temperature & soil moisture

Strength of forcing over GPP

temp. o (3PP dominated by Tair (red)
in northern ecosystems
where cold temp constrains
photosynthesis. .

Latitude [deg]

SM
-150 -100 -50 0 50 100 150

Longitude |[deg]
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Photosynthesis, temperature & soil moisture

Strength of forcing over GPP

Temp.

Latitude [deg]

SM
-150 -100 -50 0 50 100 150

Longitude |[deg]

e (PP dominated by SM (blue)
in transitional regions from
wet to dry climates.

55



Identifying the Causes of Pyrocumulonimbus (PyroCb)
Diaz Salas-Porras, E. Tazi, K, Braude, A. Okoh, D. Lamb, K.D. Watson-Parris, D. Harder, P. and Meinert, N.
NeurlPS 2022 Workshop-Causality for Real-world Impact, 2022



Take advantage of "natural” experiments

Causal discovery in Earth System science: no experiments possible on global scale, but
different regimes act as “natural” interventions to create experiment like data.

Goal Research question

Exploit heterogeneity to find causal drivers of pyroCb occurrence: why do some large
phenomenon, e.g. extreme wildfires (PyroCh) fires generate pyroCh and others do not?
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Incorporate our knowledge of the system

Visible & infrared
view of fire (S1)

Environment (

Potential fuel Potential atmospheric
causes (52) causes (

000 QQC

:
\‘/

PyroCb occurrence (Y)
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Invariant Causal Prediction (ICP) weters etal 2019

To find the causes of Y :

1. For each subset S; of candidate predictors do test H;:

2. Take intersection of .S;, where H; is not rejected, as causal predictors.
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Data

28 variables total
atmospheric

fuel

~100 pyroCb
events comprising
~6k hourly
observations

in North America
and Australia

Variable Description Sensitive to

chl 0.47 um smoke, haze

ch2 0.64 pm terrain type

ch3 0.86 um vegetation

ch4 3.9 um thermal emissions & cloud ice crystal size

ch{5,6) {11.2,13.3} pm thermal emissions & cloud opacity

{u,v} {u,v} comp. of wind at 250 hPa upper-level dynamics which influence rising
motion

{u,v}10 10m {u,v} component of wind change in fire intensity and spread

fg10 10 m gusts since prev. post-processing  (same as above)

blh boundary layer height height of turbulent air at the surface

cape convective available potential energy energy for air to ascend into atmosphere

cin convective inhibition energy that will prevent air from rising

2 geopotential energy needed for air to ascend into atmo-
sphere as a function of altitude

{slhf, sshf'} surface {latent, sensible} heat flux heat released or absorbed {from, neglecting }
phase changes

w surface vertical velocity ascent speed of the plume from the wildfire

cvih,l} fraction of {high, low} vegetation available fuel for the wildfire

type{H,L} type of {high, low} vegetation (same as above)

r{650,750,850}

rel. humidity at {650,750,850} hPa

condensation of vapour into clouds
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Non-linear conditional independence test for hinary target

e Test hased on difference between reduced model (excluding E) and full model
(including E).

e Random Forest classification models

e Use (Delong, etal. 1988) test for comparing the AUC of two models.
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|CP algorithm not feasible
e |CP: 28 variables in pyroCb dataset: 250 million tests!

e (reedy [CP: start with all candidate predictors and exclude one at a time: 406 tests

e Plot shows p-value of |H;: v 1L E| S, | as we exclude variables with Greedy ICP
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Six plausible causes of PyroCh

alt
sshf
cht
1800

cape

variable

altitude

surface sensible heat flux

13.3 um reflectance

relative humidity at 850 hPa
component of wind at 250 hPa

convective available potential
energy

proxy for...

energy needed to breach atmosphere
unstable boundary layer

Very large and intense fire

Mid-tropospheric moisture source

Unstable atmosphere, conditions favorable for
thunderstorms
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Conclusions



Contribution within Causal Discovery landscape

methods by causal assumption

non causal

.. deterministic ICM
sufficiency
i.d. O O
time series I @) @)
type
of spatio- temporal
data ©
interventional I O 66
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Conclusions

e Measuring complexity of CME is an effective way of unveiling causal asymmetries if
kernel parameter selection done with care.

e (Generative approach is advantageous for extending to spatio-temporal data and in
practice needs only relaxed ICM assumptions.

e (CMand IGCI are complementary and can be used to produce spatial maps showing
regions where different causal regimes are operating.

e |CP is suited to for Earth system sciences where different environments produce
heterogeneity, but an important limitation is the number of candidate variables.
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Contributions

e KCMC method including kernel parameter selection for CME.

e (senerative LNc method including extension to time series and an additivity hypothesis
test.

e (Combination of CCM and |GCI to address problem of strong unidirectional forcing.

e Tools for implementing ICP: eg. conditional independence test, greedy ICP algorithm
for large sets of predictors
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