

AEROSOLS

FDL 2022 | Technical Showcase Thursday 15 September 2022

Aerosols Team

Ashwin Braude Researcher

Kenza Tazi Researcher

Emiliano Diaz

Researcher

Daniel Okoh Researcher

Kara Lamb Faculty

Paula Harder Faculty

Nis Meinert Faculty

OXFORD

Duncan Watson-Parris Research Advisor

Alexander Lavin Research Advisor

AIRBUS

TRILLIUM EUROPE

(plànet. 🤇

Introduction

Global change in wildfire events

NVIDIA. SCAN[®]Al Google Cloud

(planet. 🤇

AIRBUS

Source: Douglas I. Kelley, UK Centre for Ecology and Hydrology

Identified Needs

Strategic containment + evacuation Which wildfires are risky?

OXFORD IN INTER SCAN®AI Google Cloud

Predict PyroCb

AIRBUS

TRILLIUM EUROPE

planet.

Machine Learning for PyroCb Forecasting

PyroCb Database

Forecasting Model

Discovery Framework

NIDIA. SCAN^o Al Google Cloud SI

Tools, Compute, Software Environment

OXFORD

OVIDIA. SCAN[®]Al Google Cloud ^{PASTEUR}

Database libraries

- satpy, zarr, xarray
- Copernicus Data Store API
- Apache Beam and Dataflow

Machine learning libraries

- PyTorch for CNNs and auto-encoders
- Scikit Learn for random forests and metrics

(plànet. 🤇

AIRBUS

AFROSOL

OXFORD **INIDIA. SCAN**[®]AI Google Cloud

(planet. 7

AIRBUS

TRILLIUM EUROPE

AIRBUS

TRILLIUM EUROPE

Pyrocast | Database

(planet. N

AIRBUS

TRILLIUM EUROPE

OXFORD

Pyrocast | Database

- First global PyroCb database
- 148 PyroCb ⇔ 111 wildfires
- Over 18k hourly observations
- 6 wavelength channels
- 19 meteorological and fuel variables
- Science and ML ready

(planet. N

AIRBUS

NVIDIA. SCAN[®]Al Google Cloud ^{PASTEUR}

OXFORD

all variables

AIRBUS

NUIDIA SCANOAI Google Cloud

Three learning tasks:

- 1. Detection
- 2. 6-hour forecast
- 3. 6 hour forecast with weather oracle

Three models:

- 1. Random Forests
- 2. CNN

3. Autoencoder-pret rained CNN

NVIDIA. SCAN[®]Al Google Cloud ^{PASTEUR}

Three input sets:

- 1. Geostationary
- 2. Meteorological
- 3. Geostationary + meteorological

(planet. N

Pyrocast | Forecasting Model

These tasks, models and inputs are aimed at answering:

Can we develop **detection** algorithm to label more data with?

Is imagery or meteorological information more important for forecasting?

Can we boost forecast by using weather forecast as input?

Is important information encoded **spatially**?

Do the models perform differently depending on the **initial state** of the wildfire ? ie. if a pyroCb precursor already exists.

NVIDIA. SCAN[®]Al Google Cloud

(planet.

AIRBUS

TRILLIUM EUROPE

Preprocessing

Task	# of Events	# of Observations
Detection	84	13,845
Forecast Oracle	83	6,919
Forecast	83	6,919

TVIDIENT OF OXFORD IN IDIA. SCAN®AI Google Cloud SI PASTEUR Planet.

TRILLIUM EUROPE

Data splitting

Task	Detection		Forecast Oracle		Forecast	
Cluster/Fold	# of Events	# of snapshot obs.	# of Events	# of snapshot obs.	# of Events	# of snapshot obs.
1	17	3,341	17	1,178	17	1,178
2	17	1,992	17	1,208	17	1,208
3	17	2,130	17	1,371	17	1,371
4	16	3,293	16	1,166	16	1,166
5	17	3.089	16	1,996	16	1,996

WAVERSTORD INVIDIA. SCAN®AI Google Cloud BASTEUR Planet.

Cesa / FDL 2022

Detection

Average test AUC across 5 folds

۲ F	0.95	0.81	0.95	0.85	0.95
NN	0.94	0.71	0.96	NA	NA
E-CNN	0.97	0.73	0.97	NA	NA

	Features included					
Model	gs	w3	gs + w3	w19	gs + w19	
RF	0.95	0.81	0.95	0.85	0.95	
CNN	0.94	0.71	0.96	NA	NA	
AE-CNN	0.97	0.73	0.97	NA	NA	

Pyrocast | Forecasting Model

(plànet. N

AIRBUS

NVIDIA. SCAN[®]Al Google Cloud SI Planet.

Pyrocast | Forecasting Model

	Features included				
Model	gs	w3	gs + w3	w19	gs + w19
RF	0.76	0.76	0.81	0.81	0.84
CNN	0.59	0.71	0.68	NA	NA
AE-CNN	0.65	0.7	0.74	NA	NA

Average test AUC across 5 folds

Forecasting -

oracle

Model	gs	w3	gs + w3	w19	gs + w19
RF	0.76	0.80	0.83	0.83	0.85
CNN	0.59	0.71	0.65	NA	NA
AE-CNN	0.65	0.72	0.74	NA	NA

Average test AUC across 5 folds

Pyrocast | Forecasting Model

Forecasting

Test AUC by initial state and fold

SCAN®AI Google Cloud

Feature Importance with Random Forest Classifier

Geopotential Height -10 m wind gust -Relative Humidity at 3500 m -Zonal wind velocity at 10 m -Convective Available Potential Energy (CAPE) Boundary Layer Height -0.0 0.1 0.2 0.3 0.4 Importance

Random Forest Classifier, (FPR, FNR) = (0.23,0.221)

NIDIA. SCAN^oAl Google Cloud

(plànet.

Feature Importance with Random Forest Classifier

UNIVERSITY OF OXFORD **SCAN**[®]Al Google Cloud ^{PASTEUR}

(plànet.

AIRBUS

Live twin A FERSOLS FILL STROPE

Rel. humidity

at 650hPa

Causal Invariance Results \rightarrow Important causal interactions

CAPE

(atmosphere

instability)

1.37µm (cirrus)

NVIDIA. SCAN[®]Al Google Cloud ^{PASTEUR}

(plànet. 🔿

Next Steps

- Detection algorithm
- Model pre-training
- Performance as a function of forecast time
- Saliency maps
- Other causal approaches

OXFORD 👁 INVIDIA. SCAN^OAI Google Cloud SI

Conclusion

- First comprehensive PyroCb database
- First PyroCb forecasting system
- Better understanding of the properties and causes of PyroCb

FOR ALL HUMANKIND

Appendix

TEMPLATE TO FOLLOW: POSTER TEMPLATE

TEMPLATE TO FOLLOW: TECH MEMO TEMPLATE

(plànet.

AIRBUS

In the final week of FDL, teams work on a polished TED- talk style live presentation (8 mins) and give their detailed technical presentation to key stakeholders.

In this last week, the teams have three key deliverables:

1. <u>The Technical Showcase.</u> This is a closed meeting to challenge stakeholders and experts.

