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Motivation:

Causal discovery in Earth System science: no experiments possible on global
scale, but different regimes act as “natural” interventions to create experiment
like data.

Goal:

Can we use this heterogeneity to find causal drivers of phenomenon such as
extreme wildfires (PyroCb) and Photosynthesis (GPP).



Use cases:
photosynthetic activity (toy model): can we separate direct causes of GPP from

correlated variables (effects, shared common causes, indirect causes)?

pyroCb ocurrence (real observations): why do some large fires generate
pyroCb and others do not?
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Causal discovery in general: Learn the causal structure
or DAG in th left.

Additional context: we know the following
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Two approaches.
- General Causal Discovery: find all conditional
independencies
- Invariant Causal predictions: find the minimal set
of variables S that satisfy

Xge.
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Invariant Causal Prediction
(ICP) [Peters, J. et al 2016]:

Minimal conditional
independence condition:

GPP independent of
environment E given direct
causes S*={soil moist., rad}

This is the minimal set S where
this conditional independence
holds



Invariant Causal Prediction (ICP) [Peters,

Toy GPP J. et al 2016]:

casual model

climate Advantages of ICP:

type

- less ambitious than causal
discovery: may concentrate on one
target variable

- incorporate domain knowledge
through choice of environment
variable and potential causes

- Shown better performance than
other conditional independence
test based methods in some cases



ICP algorithm

To find the causes of Y:

1. Foreach subset S of candidate predictors
perform conditional independence test H.:

Y I F| Xg-.

2. Take intersection of S, where H. is not rejected
as causal predictors.
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28 variables
total

atmospheric

fuel

~ 100 pyroCb
events
comprising ~6k
hourly
observations

in North
America and
Australia

Variable Description Sensitive to

chl 0.47 um smoke, haze

ch2 0.64 pm terrain type

ch3 0.86 um vegetation

ch4 3.9 um thermal emissions & cloud ice crystal size

ch{5,6) {11.2,13.3} pm thermal emissions & cloud opacity

{u,v} {u,v} comp. of wind at 250 hPa upper-level dynamics which influence rising
motion

{u,v}10 10m {u,v} component of wind change in fire intensity and spread

fg10 10 m gusts since prev. post-processing  (same as above)

blh boundary layer height height of turbulent air at the surface

cape convective available potential energy energy for air to ascend into atmosphere

cin convective inhibition energy that will prevent air from rising

2 geopotential energy needed for air to ascend into atmo-
sphere as a function of altitude

{slhf, sshf'} surface {latent, sensible} heat flux heat released or absorbed {from, neglecting }
phase changes

w surface vertical velocity ascent speed of the plume from the wildfire

cvih,l} fraction of {high, low} vegetation available fuel for the wildfire

type{H,L} type of {high, low} vegetation (same as above)

r{650,750,850}

rel. humidity at {650,750,850} hPa

condensation of vapour into clouds

From Tazi, K., et al 2022
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|ICP algorithm

To find the causes of Y:

1. Foreach subset S of candidate predictors
perform conditional independence test H.:

Y I E| Xg-.

2. Take intersection of S, where H. is not rejected
as causal predictors.

ICP: 28 variables in pyroCb dataset -> 250 million tests!

Greedy ICP: start with all candidate predictors and exclude one at a time -> 406 tests



Conditional independence
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alt

sshf

ch6

rg850

cape

variable
altitude

surface sensible
heat flux

13.3 um
reflectance

relative humidity
at 850 hPa

component of
wind at 250 hPa

convective
available
potential energy

proxy for...

energy needed to breach atmosphere

unstable boundary layer

Very large and intense fire

Mid-tropospheric moisture source

Unstable atmosphere, conditions
favorable for thunderstorms
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Limitations of the ICP approach

ICP :
- number of hypothesis tests needed very large
- Dependence among predictors results in empty set inference
- Conditional independence tests hard in non-linear case
Greedy ICP

- order dependent- variables chosen for exclusion in beginning affect inference.



Invariant Causal Features

Can we use Neural Networks to:
1. learn a causal representation (get around ICP and Greedy ICP problems)

2. Learn latent environment -> identify our “quasi-experiments” (climatic type in
GPP toy model)



L(y, x; Wg, wg, , 8) = L1 (y, 2; wg, wa, @, B) + A||Vwg L1 (y, 2, wg, wa, , B)||3

Prediction Loss:
First term the usual MSE or Cross Entropy loss

Second term in loss conditional independence (Cl) proxy
e Favors representations that are invariant across E’s but not necessarily
minimal/sparse!
e Use pruning of weights wrt the CI proxy in order to obtain sparsity ->
intersection operation of ICP
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L(y, x; Wg, Wz, @, B) = L1(y, %; wg, wg, &, B) + A|| Vg L1 (y, z; wg, wg, @, B)||3

candidate
X

causes OOQ Q Q

Latent causal a\ )
representation
W Q Q Q Q Q Q Q We know have ONE

w latent architecture with reduced and
L W g environment full model (recall our

Q @ Q conditional independence
test)

In blue - “reduced model”

Each rectangle represents a
fully connected (possibly
deep) NN

Blue and yellow - “full” model
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Learn latent
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L(y, x; Wg, Wz, @, B) = L1(y, %; wg, wg, &, B) + A|| Vg L1 (y, z; wg, wg, @, B)||3
candidate X

causes QQQ Q Q

Adversarial training of reduced
model and latent environment:

We don’t want to use
environment info for prediction.

QOOO OQQ Use it to:

w latent e enforce conditional
T wWE environment independence proxy
Latent causal Q @ Q e estimate latent
representation environment
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With toy GPP causal model, with known
ground truth we test if we can learn:

1. causal representation

2. climatic type (latent environment)
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The representation is
using c4 as a proxy
for GPP
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Ground truth climatic Estimated climatic
region region

This might be a way of investigating when environments create different

conditions that can be exploited in causal discovery.
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Figure 5.12: Training evolution of AIG algorithm: AUC, ||V, Li(y,x; W)||3 and the p-
value corresponding to the conditional independence test y L E|z for both
train (blue) and test (orange) sets. In green the number of variables that have
not been pruned is shown. Vertical red lines indicate two interesting causal
representations to be further analyzed.

After 1800 epochs (marked in red) we maintain a test AUC of 68% with 12 variables used and
test p-value of 0.59: we have a sparse model which satisfies causal Cl condition.

Large test gradient may indicate we have overfit the environment variables.
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Table 5.2: Variable exclusion sequence for greedy ICP and AIG.

Method 1 2 3 4 5 6 7 8 9 100 11 12 13 14

Icp vio cin ch3 uv250 ch2 chs slhf ry50 fgio r650 u chg cvh typel
AIG chs alt wuio typeH chg cvh sshf u chi viocha w 2z c¢vl

Method 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ICP typeH cvl w  blh uvio z ch:t uio sshf r850 v ché cape alt
AIG slhf r8s0 typeL ché6 fgio ry50 r650 uvio uv2so v blh ch3 cin cape

The AIG algorithm results put more emphasis variables such as cape, cin
and blh which describe the instability of the atmosphere.

Altitude not considered as important but vegetation (ch3) is.
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Figure 5.13: Causal representation found at two stages of training indicated in Figure 5.12.

The magnitude of the bars represents the aggregated and normalized partial
derivative of the loss function with respect to each input.
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Figure 5.14: Representation of Environment. The first two PCA components of the en-
vironment representation zp are shown using the size of the points. These
represent more than 99% of the variance in zg. The plot also illustrates the
dependence of these components on the raw environment variables, longitude
(x-axis), latitude (y-axis) and julian date (color of points).



Take aways:

1. ICP unfeasible when large number of candidate predictors.

2. Greedy ICP finds a plausible set of causes for pyroCb but inference
is unstable

3. Unclear if NN are effective in finding causal representation but may
help to identify natural interventions which could help in causal

discovery .
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Next Steps:

1. Can we get NN to learn correct causal representation.

2. Can we use learnt environment in causal discovery with mixed data
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