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¥ USMILE Bivariate causal discovery algorithm for non-additive data

A method to “plug-in” after the Markov equivalence class has been estimated
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Causal insufficiency widespread in Earth system sciences

Non-additive data important for Earth system science

1. weak form of non causal sufficiency

GPP

2. can generate structured data e.g. spatial, temporal

GPP
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USMILE Instantaneous relationships widespread in Earth system sciences

e “Instantaneous” relationships often occur in practice due to systems observed at
lower resolution than the fundamental mechanisms.

e In this case additional assumptions necessary to identify the causal structure.

native resolution aggregated low resolution Examples
X X e Daily ERA5S data
e \Weekly satellite
data
y y e harmonizationoof

different products
to lower temporal
“ Z resolution
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To identify causal structure when
instantaneous relationships exist
we need extra assumption.

modularity assumption

ie no info about p(y|z) IN p(z)
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USMILE Taking a step back: modeling the inducing FCM
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y = f(x, 2)

Latent Noise approach
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e usmiLe An extended ICM assumption

For a data generating mechanism  y = f(z,2) we make the following
assumptions, following (Stegle, et al 2010)

Deterministic process
Exogenous noise 2
Gaussian noise 2
Algorithmic independence
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Loss fu

nction for finding z penalizes assumption violations

L(Z) =

In (nHSIC(X,, Rz—y)) + (In (MSE(R;—y))

+nln (nHSIC(X, 2)) + vin (SMMD?,(2))

where:

Xo i ={(2i,2i) }iy

Deterministic process

Rm—)y = {yz - f(mz'azi) ?:1
@: f((D,Z) = Z?:l aik((waz)1 (iviazi)) S Hmz
a= (K, +n\)ly
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TE USMILE Loss function for finding z penalizes assumption violations

Teeet

L(Z) =In(nHSIC(X,,Rz—y)) + (In (MSE(R;—y))
+nln (RHSIC(X, £)) 4 vin (SMMD?,(£2))

where:
Xo i ={(2i,2i) }iy
Rasy = {yi — @i, 2i) iy
§ = f(z,2) = i cik((2,2), (wis 21)) € Ha
a= (K, +n\) 1ty

Exogenous noise
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TE USMILE Loss function for finding z penalizes assumption violations

Teeet

L(Z) =In(nHSIC(X,,Rz—y)) + (In (MSE(R;—y))
+nln (RHSIC(X, £)) + vin (SMMD?,(Z))

where:
Xo i ={(2i,2i) }iy
Rasy = {yi — @i, 2i) iy
§ = f(z,2) = i cik((2,2), (wis 21)) € Ha
a= (K, +n\) 1ty

(Gaussian noise
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S UsmiLe Enforce soft assumptions
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Advantages
e Rank relative importance of assumptions

e Relaxing determinism assumption: use non-additvity as causal signal:
o model misspecification (anti causal direction)
o estimation error (both directions)
o asymmetry assumption: model misspecification generates more non-additivity
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S = min{nHSIC(X,R,_,),nHSIC(Y, R, ,:)}
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LNc method’s accuracy improves with non-additivity

all

— ANMh — LNc
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USMILE Combining LNc and ANMh obtains SOTA performance

LNc-ANMh
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2 :' |_|srn||_E Relative importance of assumptions

MSE(R. ) nHSIC(X, Z) nHSIC(X,,R; ) SMMDfV(Z)
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contribution to accuracy

e Additive residual assumption only one that needs to be implemented strictly.
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LNc method’s accuracy improves with non-additivity

all
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m«‘u SMILE Conclusions & contributions

e (enerative approach is advantageous for extending to spatio-temporal data.

e Generative LNc method including extension to time series and an additivity
hypothesis test.
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“" ‘USMILE Limitations

e [ime series extension only applies when there is no self-dependence in effect
variable

e Only suitable for cases where confounding is ruled out
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%e¥ usmiLe  Opportunities

e \When causal discovery is applied to time series at an aggregated scale
iInstantaneous effects very common: asymmetry methods suitable.

e A soft/weak form of non-causal sufficiency can be responsible for non-additive
data: need asymmetry methods suited to this setting. Non causal sufficiency
very common In Earth system science.

e Can be used to complement other causal discovery algorithms that don’t make

ICM assumption and can’t fully identify causal structure when “instantaneous”
relationships occur.
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