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Bivariate causal discovery algorithm for non–additive data

A method to “plug-in” after the Markov equivalence class has been estimated
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Causal insufficiency widespread in Earth system sciences

Non-additive data important for Earth system science

1. weak form of non causal sufficiency

2. can generate structured data  e.g. spatial, temporal
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Instantaneous relationships widespread in Earth system sciences

● “Instantaneous” relationships often occur in practice due to systems observed at 
lower resolution than the fundamental mechanisms. 

● In this case additional assumptions necessary to identify the causal structure.
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native resolution aggregated low resolution Examples

● Daily ERA5 data
● Weekly satellite 

data
● harmonizationoof 

different products 
to lower temporal 
resolution
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Independence of cause and mechanism (ICM) (Daniusis et al, 2010)

To identify causal structure when 
instantaneous relationships exist 
we need extra assumption.

- modularity assumption

- ie no info about             in 
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Taking a step back: modeling the inducing FCM
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An extended ICM assumption

For a data generating mechanism                           we make the following 
assumptions, following (Stegle, et al 2010)

1. Deterministic process
2. Exogenous noise 
3. Gaussian noise 
4. Algorithmic independence
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where:

Loss function for finding z penalizes assumption violations

Deterministic process
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Loss function for finding z penalizes assumption violations

where:
Exogenous noise
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Loss function for finding z penalizes assumption violations

where:
Gaussian noise
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Enforce soft assumptions

Advantages 

● Rank relative importance of assumptions 

● Relaxing determinism assumption: use non-additvity as causal signal:
○ model misspecification (anti causal direction)
○ estimation error (both directions)
○ asymmetry assumption: model misspecification generates more non-additivity
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IID data & additivity hypothesis test 
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LNc method’s accuracy improves with non-additivity
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Combining LNc and ANMh obtains SOTA performance
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Relative importance of assumptions

● Additive residual assumption only one that needs to be implemented strictly.
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LNc method’s accuracy improves with non-additivity
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Conclusions & contributions 

● Generative approach is advantageous for extending to spatio-temporal data.

● Generative LNc method including extension to time series and an additivity 
hypothesis test.
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Limitations 

● Time series extension only applies when there is no self-dependence in effect 
variable  

● Only suitable for cases where confounding is ruled out
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Opportunities 

● When causal discovery is applied to time series at an aggregated scale 
instantaneous effects very common: asymmetry methods suitable.  

● A soft/weak form of non-causal sufficiency can be  responsible for non-additive 
data: need asymmetry methods suited to this setting. Non causal sufficiency 
very common in Earth system science. 

● Can be used to complement other causal discovery algorithms that don’t make 
ICM assumption and can’t fully identify causal structure when “instantaneous” 
relationships occur.
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