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1 Introduction

The goal of this practical is to learn the use of geographic information systems (GIS) in R . We will prepare a
set of environmental predictors that are relevant to explain the richness of birds in the landscape.

We will use the monir data set. Monitoring of common breeding birds (Monir by its initials in french) is
a central project for the monitoring of common species. It shows the development of their workforce and
potential changes to their range.

The field of study consists of 267 square kilometer evenly distributed throughout Switzerland. They come
largely from the monitoring network of biodiversity in Switzerland with whom we work closely. Numbers are
identified by a simplified method for mapping the territories. 200 members of staff, volunteers in majority,
conduct the field work. To process a large number of surfaces, it is necessary that the number of censuses by
area is not too high (3 visits per spring 2 above the limit of the forest). The readings always follow the same
route and observers note the contacts with the criteria set for each species.

Finally, we will combine environmental factors and species richness in a statistical model to map the diversity
of bird species over Switzerland.

We change the working directory to our reference folder (files will be loaded with respect to this address):

setwd("/Volumes/Local/emilianodiazsalasp/Documents/ETH Zurich/USYS/scripts/birdRichness/R")
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Geospatial data are usually only useful when associated with a coordinate reference system (CRS)1. This is
the information needed to relate spatial coordinates in the dataset to actual positions on our planet, and
by extension to relate spatial datasets to one another. When using programmatic tools to convert spatial
data into a different CRS (e.g., when performing map projection) you will sometimes need to express it in a
standard format that the program can understand. There are several common ways to do this. Different
software applications have traditionally used different formats, but most modern software libraries (including
those associated with R ) will support at least one of the following: EPSG codes, PROJ.4 strings, and the
Well-known text (WKT) format.

PROJ.4 strings are a compact way to identify a coordinate reference system. Using the PROJ.4 syntax, it
is possible to specify the complete set of parameters that define a particular CRS. The PROJ.4 string is
a sequence of parameters, each one beginning with a “+” symbol. The mandatory +proj parameter gives
the general projection using a PROJ.4-specific name (note: for unprojected data, use +proj=latlon). If a
standard ellipsoid (+ellps) is used, it can be given by name, as can the datum (+datum). You will then need
to add any additional parameters (and their values) required to define the specific projection. For many
common projections, refer to this online documentation of the relevant parameters. More generally, the
PROJ.4 string will be built from a small set of parameters common to most projections.

We will work with the Swiss coordinate reference system CH 1903 LV95 (EPSG 2056) which is defined by the
following parameters:

Parameter name Proj4 name CH 1903 LV95 value Proj4 name

Projection name proj Oblique mercator omerc
latitude of origin lat_0 46’ 57’ 8.67’ 46.94
longitude of origin lonc 7’ 26’ 22.5’ 7.44
Azimuth alpha 90 90
Scaling factor k_0 1 1
False easting x_0 600,000m 600000
False northing y_0 200,000m 200000
Units units meters meters
Ellipsoid name ellps Bessel bessel

Table 1: Swiss coordinate reference system (CH 1903 LV95) param-
eters

For more information on this coordinate system visit the Swiss Federal Office of Topography (swisstopo).

We store CH 1903 LV95 coordinate reference system parameters in a proj.4 string:

prj <- "+init=epsg:21781"

We will obtain a shape file including the cantons of Switzerland to be used as a reference with which to
contextualize other spatial features of Switzerland which we will use in order to explain bird species richness.

Shape objects in R are defined by the SpatialPoints, SpatialLines and SpatialPolygons classes of the sp
package:

1Information in introduction relating to coordinate reference systems (CRS) and PROJ.4 CRS specification format taken
from https://www.nceas.ucsb.edu/scicomp/recipes/projections
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• SpatialPoints consist of a matrix with n rows and 2 columns, one for each coordinate, where n is the
number of points and a string indicating the coordinate reference system in which coordinates of points
are expressed,

• SpatialLines consist of a list of Lines objects and a string indicating the coordinate reference system in
which lines are expressed. Each Lines object in the list itself consists of a list of Line objects and an
identifier, ID, for that list. The Line object, similar to SpatialPoints, consists of a matrix with n rows
and 2 columns.

• SpatialPolygons consist of a list of Polygons objects and a string indicating the coordinate reference
system in which polygons are expressed. Each Polygons object in the list itself consists of a list of
Polygon objects and and identifier, ID for that list. The Polygon object, similar to SpatialLines, consists
of a matrix with n rows and 2 columns, except that in this case the coordinates of the last row must be
the same as that of the first row.

The corresponding SpatialPointsDataFrame, SpatialLinesDataFrame and SpatialPolygonsDataFrame classes
allow to store shape objects together with a dataframe where the number of rows in the dataframe corresponds
to the number of points (number of rows in coordinate matrix), lines (size of list of Lines) or polygons (size
of list of Polygons). This allows us to associate a vector of variables (a row of the dataframe) to each shape
object.

We use the getData function from the R package raster to get the political map of Switzerland at the level
of cantons. This function can be used to get geographic data for anywhere in the world. Data are read from
files that are first downloaded if necessary. This data will come expressed with respect to its own coordinate
reference system. To use it together with the data we will import, we transform it into the Swiss coordinate
system using the spTransform function from the R package sp.

We get a map of the cantons of Switzerland:

library(raster)
print(CRS(prj))

## CRS arguments:
## +init=epsg:21781 +proj=somerc +lat_0=46.95240555555556
## +lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000
## +ellps=bessel +towgs84=674.4,15.1,405.3,0,0,0,0 +units=m +no_defs

ch.sp <- getData(c("GADM", "countries", "SRTM", "alt", "worldclim")[1],
country = "CHE", level = 1)

library(sp)
ch.sp <- spTransform(ch.sp, CRS(prj))

Now lets check the class of ch.sp:

class(ch.sp)

## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"

What does the SpatialPolygonsDataFrame consist of?

slotNames(ch.sp)
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## [1] "data" "polygons" "plotOrder" "bbox" "proj4string"

What is the internal variable polygons?

class(ch.sp@polygons)

## [1] "list"

length(ch.sp@polygons)

## [1] 26

table(sapply(ch.sp@polygons, class))

##
## Polygons
## 26

table(sapply(ch.sp@polygons, length))

##
## 1
## 26

slotNames(ch.sp@polygons[[1]])

## [1] "Polygons" "plotOrder" "labpt" "ID" "area"

We can see that it is a list of size 26 where each element is a Polygons of length 1, which contains, among
other internal variables, Polygons.

What is the internal variable Polygons?

class(ch.sp@polygons[[1]]@Polygons)

## [1] "list"

length(ch.sp@polygons[[1]]@Polygons)

## [1] 1

slotNames(ch.sp@polygons[[1]]@Polygons[[1]])

## [1] "labpt" "area" "hole" "ringDir" "coords"
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head(ch.sp@polygons[[1]]@Polygons[[1]]@coords)

## [,1] [,2]
## [1,] 659249.6 273009.8
## [2,] 659257.5 273006.9
## [3,] 659327.2 273009.7
## [4,] 659402.9 273022.4
## [5,] 659458.7 273053.1
## [6,] 659498.6 273086.6

tail(ch.sp@polygons[[1]]@Polygons[[1]]@coords)

## [,1] [,2]
## [2009,] 659020.0 273378.2
## [2010,] 659057.4 273239.9
## [2011,] 659076.4 273164.6
## [2012,] 659130.7 273077.8
## [2013,] 659186.6 273032.5
## [2014,] 659249.6 273009.8

We can see that it is a list of size 1 where each element is a Polygon, which contains, among other internal
variables, coords, a matrix of coordinates describing the points of the polygon and such that the first point is
the same as the last.

What is the area of each one of those Polygon objects in the nested lists of size 1?

format(round(sapply(ch.sp@polygons, function(polys) polys@Polygons[[1]]@area)),
trim = T, scientific = F, big.mark = ",")

## [1] "1,377,235,713" "245,657,490" "157,914,676" "4,517,435"
## [5] "34,714,024" "970,034" "5,583,456" "655,202"
## [9] "692,289,399" "71,242" "832,717,053" "3,154,504"
## [13] "811,268,715" "16,301,185" "73,651,011" "2,414,966,888"
## [17] "28,557,067" "889,691,068" "1,625,231" "2,922"
## [21] "2,854,637,576" "1,070,768,440" "5,209,024,926" "3,132,996,310"
## [25] "1,738,107,053" "240,370,831"

For more information on the shape objects in R go to http://www.maths.lancs.ac.uk/~rowlings/Teaching/
UseR2012/cheatsheet.html.

We now take a look at the bird species richness data.

We load and plot bird richness response variable from monir dataset:

bird <- read.table("../data/textFiles/Richness_bird.txt", h = T)
par(mar = c(0, 0, 0, 0))
plot(ch.sp)
points(bird$X, bird$Y, cex = bird$richness/50, pch = 21, bg = "yellow")
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Figure 1: Political map of Switzerland and bird richness at sampled sites (from monir dataset).

Question 1.0.1 What environmental factors explain bird species richness?

2 Creation of environmental predictors

We will prepare a set of environmental variables that are expected to explain bird species richness in
Switzerland.

A raster object consists primarily of:

• A grid of cells,
• A coordinate reference system (CRS) for the grid and its cells so that we know the location to which

the grid refers,
• A variable of interest for which each cell in the grid has a value, and,
• Other information relating to the CRS, projection, resolution, etc.

The strategy will be to obtain predictor rasters for a 1000m x 1000m resolution covering all of Switzerland.
To build the model we will then extract from each raster the values of the cells where bird species richness
was sampled.

The extract function from the R package raster gives back the values of the raster, given as first argument,
at the coordinates given as second argument: in other words the values of the cells where the coordinates fall.
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2.1 Elevation based predictors

2.1.1 Elevation

We will use elevation, primarily, as a predictor for modeling temperature and slope which are two environmental
factors which affect bird species richness.

We will first load a digital elevation model (DEM) raster using the raster function from the R package
raster which creates a raster object in one of several ways, including by reading a file that can be interpreted
by the gdal driver, which is how we use it here.

The elevation raster was obtained from the Swiss Federal Office of Topography (swisstopo).

We load and plot elevation raster:

dem <- raster("../data/mnt25_1km", crs = prj)
plot(dem)
plot(ch.sp, add = T)

500000 600000 700000 800000

10
00

00
20

00
00

30
00

00

1000

2000

3000

4000

Figure 2: Map of elevation (raster) in Switzerland together with the cantonal borders (shapefile).

2.1.2 Slope

Slope is a proxy of many environmental parameters. In particular, slope is a good proxy of land-use intensity,
since steep slopes are more difficult to be worked by farmers.

We will calculate slope using the method from the terrain function which is part of the raster package.
The function calculates slope as a function of elevation so we input the elevation raster as the first argument.
This function can calculate several variables so we specify, through the opt and unit parameters that we need
slope in degrees.

We calculate slope using terrain function and plot resulting raster.
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slope <- terrain(dem, opt = "slope", unit = "degrees")
par(mar = c(0, 0, 0, 0))
plot(slope, axes = F, box = F, col = terrain.colors(100))
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Figure 3: Map of slope in degrees (raster) in Switzerland calculated from elevation map with terrain function.

2.1.3 Slope categories

The reclassify function from the R package raster can be used to classify numeric rasters into intervals.
To do so provide a three column reclassification matrix. The third column indicates the new value assigned
to all values that are in the range indicated by the first two columns. If there are overlapping ranges the
value corresponding to the range which appears first in the reclassification matrix takes precedence. The
parameter right which takes values true or false indicates whether the intervals should be closed on the right
and open on the left (true) or vice versa (false).

The values function from the R package raster gives back the values of the raster grid in the order of the
cell numbers which go from the top left of the raster grid, accross and then down, to the bottom right of the
raster grid.

First categorize slope raster according to the following intervals: 0-10, 10-20, 20-30 and 30-40:

summary(values(slope))

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 2.58 7.32 9.28 14.73 39.43 42804

cats <- seq(0, 30, by = 10)
catLabels <- paste(cats, cats + 10, sep = "-")
rcl <- matrix(c(cats, cats + 10), length(cats), 2)
rcl <- cbind(rcl, seq(length(cats)))
slopeCat <- reclassify(slope, rcl, right = F)
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Now plot newly created slope category raster:

library(RColorBrewer)
par(mar = c(0, 0, 0, 0))
plot(slopeCat, legend = F, col = brewer.pal(4, "Accent"), box = F,

axes = F)
legend("bottomright", legend = catLabels, fill = brewer.pal(4,

"Accent"))

0−10
10−20
20−30
30−40

Figure 4: Map of slope in degrees (raster) categorized into four intervals with reclassify function.

2.2 Climate predictors

2.2.1 Temperature estimation

Temperature is a major physiological limitation for many different species including birds. For instance only
a few specialized species have the adaptations necessary to tolerate the cold temperatures observed at higher
elevation. We want to use mean temperature as a predictor of bird species richness but only have it available
at the locations of Swiss meteorological stations. We will estimate a model for temperature that will allow us
to estimate mean temperature at any location in Switzerland, including those for which we have bird species
richness observations.

We first load the temperature data from Swiss meteorological stations and display a sample of it:

library(pander) # pander
t.obs <- read.table("../data/textFiles/Table_mean.txt", h = T)
pander(head(t.obs[, c(1:5, 33:34)]), caption = "Sample of temperature (yearly average of mean daily temperature in degrees celsius) information for first and last two years available of the 1980-2010 period.")
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Station X Y X1980 X1981 X2009 X2010

ABO 609400 148975 8.713 NA 10.67 9.234
AIG 560400 130713 NA 13.61 15.44 14.1
ALT 690174 193558 12.22 12.98 14.63 13.45
AND 752687 164035 NA NA 13.11 11.81
ARH 760350 261380 NA NA 14.2 13.09
ATT 586850 105310 NA NA 1.069 -0.1925

Table 2: Sample of temperature (yearly average of mean daily
temperature in degrees celsius) information for first and last two
years available of the 1980-2010 period.

The data includes information from 108 meteorological stations from the Swiss meteorological network
(meteoswiss). It consists of yearly averages of mean daily temperature in degrees celsius for the 1980-2010
period.

Now plot location of meteorological stations and bird species richness observations:

par(mar = c(0, 0, 0, 0))
plot(dem, box = F, axes = F)
points(t.obs[, c("X", "Y")], col = "blue", cex = 1)
points(bird[, c("X", "Y")], pch = 4, col = "dark green")
legend(730000, 90000, col = c("blue", "dark green"), legend = c("meteo-station",

"bird richness obs."), pch = c(1, 4))
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Figure 5: Map of elevation (raster) with locations of meteorological stations and bird species richness
observations.

We can see that the stations are reasonably evenly distributed accross Switzerland. We can also observe that
we need a model for mean temperature in order to estimate it at bird species richness observation locations
and use it as a predictor.

It is well known that mean temperature depends on, among other things, altitude. We will now explore the
relationship between mean temperature and elevation.

We compute the mean temperature at all meteorological stations across years 1980-2010:

t.mean <- rowMeans(t.obs[, 4:ncol(t.obs)], na.rm = T)

Now extract elevation values for the sites with temperature data:

t.elev <- extract(dem, t.obs[, c("X", "Y")])

Next plot the relationship between elevation and temperature:

plot(t.elev, t.mean, xlab = "elevation", ylab = expression("Temperature (" ~
degree ~ C ~ ")"))
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Figure 6: Mean temperature (1980-2010) vs. elevation at meteorological stations in Switzerland.

We observe a negative linear relationship between mean temperature and elevation. Since we have the
elevation information for all of Switzerland at 1000m x 1000m resolution, we can use this relationship to
build a model of temperature based on elevation, and use this model to predict the mean temperature for all
of Switzerland at the given resolution.

We will fit a simple linear model of the type:

ti = β0 + β1ei + εi (1)

where:

• ti is temperature of observation i,

• ei is elevation of observation i,

• εi is the error term corresponding to observation i. We assume the error terms εi:

– have mean zero: E[εi] = 0 for all i,
– are homoscedastic: V ar[εi] = σ2 for all i,
– are not autocorrelated: Cor[εi, εj ] = 0 for all i, j, and
– are distributed normally (not strictly necessary, but standard confidence intervals and hypothesis

tests rely on this).

We fit a linear model for temperature based on elevation:

lm1 <- lm(t.mean ~ t.elev)
pander(summary(lm1), caption = "Summary of linear model of temperature based on elevation.")
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Estimate Std. Error t value Pr(>|t|)

t.elev -0.005826 0.0002953 -19.73 2.838e-37
(Intercept) 16.41 0.3903 42.03 6.375e-68

Observations Residual Std. Error R2 Adjusted R2

108 2.404 0.786 0.784

Table 4: Summary of linear model of temperature based on eleva-
tion.

Question 2.2.1 Can you explain what is a lapse rate and to which one of these parameters it corresponds?

In the linear regression setting we can look at certain plots of the residuals to verify model assumptions and
identify outliers:

• The Tukey-Anscombe plot helps check the unbiasedness of the model: E[ri] = 0
• The Scale-location plot helps check the homoscedasticity of errors: V ar[ri] = k

• The normal Q-Q plot helps check that error term is indeed distributed normally
• Cook and leverage plots help identify outliers: observations with atypical values for predictors (high

leverage) and which have high influence on model estimation (high Cook’s distance).

We now create diagnostic plots to check model assumptions:

par(mfrow = c(2, 2))
plot(lm1, 1)
plot(lm1, 2)
plot(lm1, 3)
plot(lm1, 5)
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Figure 7: Diagnostics for simple linear regression model of mean temperature as a function of elevation. These
plots help to verify model assumptions: Tukey-Anscombe plot (top left) for checking model bias, Normal
Q-Q plot (top right) for verifying normality of residuals, Scale-Location plot (bottom left) for verifying
homoscedasticity of residuals and residuals vs. leverage plot (bottom right) for detecting outliers.

# identify outliers
outliers <- c(18, 32, 83)

Model assumptions hold up reasonably apart from observations 18, 32 and 83 which the model does not seem
to explain well and which may be affecting parameter estimation. This is because other factors apart from
elevation influence temperature. If these other factors are associated to the location of observations we can
deal with these outliers by fitting a spatial model for the residuals. This will be our approach.

Lets project model over Switzerland by using coefficients, together with elevation raster of Switzerland, to
calculate linear predictor for all locations in Switzerland. We also plot resulting raster:

coefs <- coef(lm1)
temperature.r <- dem * coefs[2] + coefs[1]
plot(temperature.r, box = F, axes = F, col = rev(heat.colors(100)))
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Figure 8: Projected mean temperature of all Switzerland using linear model based on elevation.

For a statistical model to be deemed reasonable it must not have systematic error. In practical terms, this
means model residuals should not show any pattern or structure when plotted against other variables. In this
case, we will plot model residuals against their location to see if there is any spatial pattern in the residuals.
Location in itself is not the cause for difference in performance (underestimation or overestimation) of the
temperature model based on elevation. Rather location, in this context, will behave as an interaction variable
summarizing the effect of all the different factors, except elevation which has already been considered, that
affect bird species richness and which have a spatial dependence structure. If there is such a pattern we need
to incorporate it into the model so that our prediction of temperature does not have systematic error, in
other words, that for any location the expected error is zero.

We only have residuals at certain locations which makes it hard to appreciate any pattern. We first interpolate
the residuals so that we obtain a residual value for every location in Switzerland (at 1000m x 1000m resolution).

We first get the residuals from the model and organize them in a dataframe which also contains the coordinates
corresponding to each residual:

t.obs.res <- data.frame(cbind(t.obs$X, t.obs$Y, residuals(lm1)))
colnames(t.obs.res) <- c("x", "y", "Res")

We will now interpolate residuals so as to have a residual value for all cells in the Switzerland 1000m x 1000m
raster grid.

The gstat function from the R package gstat creates a kriging modeling object (kriging is a type of
interpolation based on spatial correlation functions) of type gstat. In this case we want to interpolate
residuals. The function has the following parameters (among others):

• formula: Since we wan to perform ordinary/simple kriging we use formula residual ~ 1, ie we only use
the residuals themselves at known locations to infer residuals at unknown locations,

• locations: independent variables, i.e. coordinates, and,
• degree: order of trend surface in the location, between 0 and 3.

First fit ordinary kriging model to residuals:
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library(gstat) #gstat
idw.t.obs <- gstat(id = "Days.Res", formula = t.obs.res$Res ~

1, locations = ~x + y, data = t.obs.res, nmax = 10, degree = 1)

The interpolate function from the R package raster uses the interpolation model for a given variable z
passed as second argument to predict, or interpolate, the values of z for all cells of the raster passed as first
argument.

Now interpolate residuals at all locations of 1000m x 1000m Switzerland raster grid:

idw.final <- interpolate(dem, idw.t.obs)

## [ordinary or weighted least squares prediction]

The residual values were interpolated at locations of all cells of the elevation raster, even those for which the
elevation value is NA. We only need to keep the interpolated residuals for those cells for which the elevation
values exists. The function mask from the R package raster creates a new raster object that has the same
values as the first raster argument, except for the cells that are NA in the second raster argument. These
cells become NA.

We eliminate interpolated values at places where there is no elevation value:

idw.final <- mask(idw.final, dem)

Next we plot spatial distribution of residuals based on interpolation of model residuals. We also add locations
of meteorological stations and outliers:

par(mar = c(0, 0, 0, 0))
plot(idw.final, box = F, axes = F)
plot(ch.sp, add = T)
points(t.obs[outliers, 2:3], col = "blue")
points(t.obs[-outliers, 2:3], col = "black")
text(t.obs[outliers, 2:3] + 10000, labels = outliers, col = "blue")
legend(730000, 90000, col = c("black", "blue"), legen = c("normal observation",

"outlier"), pch = 1)
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Figure 9: Interpolation model of residuals and observation locations with outliers marked in blue.

Question 2.2.2 Why is it important to look at model residuals spatially?

Question 2.2.3 Can you identify regions with higher residuals (i.e. difference between observation and
prediction)? What could explain this?

Question 2.2.4 Describe the spatial pattern of errors. Is the climate model biased?

We can see that the spatial model tends to correct the linear model more near the locations where we observed
the outliers indicating that the outliers fit into the spatial pattern of residuals.

We conclude that the linear model for temperature based on elevation makes systematic errors depending on
location. Since interpolation model gives us a prediction for the error of our linear model, we can improve
this model by adding to it the predicted error based on the interpolation model. Our model is now:

ti = β0 + β1ei + ε(xi, yi) + ηi (2)

where:

• ti is temperature of observation i,
• ei is elevation of observation i,
• ε(xi, yi) is a term that is a function of location, and which represents all predictors, apart from elevation,

that depend on location, and,
• ηi is the error term corresponding to observation i. We assume the error terms ηi satisfy the assumptions

that previoulsy applied to εi.
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Notice that we fitted the above model in two steps, first estimating the β0, and β1 coefficients and then fitted
an interpolation model to estimate ε(xi, yi). It is also possible (and more optimal in general) to fit all model
parameters concurrently.

We correct systematic errors of linear model for mean temperature based on elevation by summing the model
and residual projection rasters. We also plot resulting raster:

temperature.r <- idw.final + temperature.r
par(mar = c(0, 0, 0, 0))
plot(temperature.r, box = F, axes = F, col = rev(heat.colors(20)))
plot(ch.sp, add = T)

−5

0

5

10

15

Figure 10: Projected mean temperature of all Switzerland using linear model based on elevation and spatial
model of residuals to correct systematic errors.

We now have an expected mean temperature raster at a 1000m x 1000m resolution which we can use to
obtain mean temperature at the bird species richness sample locations.

2.2.2 Solar radiation estimation

Solar radiation is another relevant measure of energy, complementary to temperature. This is because
temperature measured by meteorological stations corresponds to standardized shade temperature.

We wish to estimate the solar radiation for a certain date (June, day 152-181). We will use the function
insolation from the R package insol to achieve this.

We will obtain radiation estimation using insolation function and related functions (JD, sunvector, sunpos)
from R package insol.

We will arbitrarily choose to estimate the radiation on a given 1st of June.

First we obtain the 2016-06-01 in julian-day format:
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library(insol) # JD, slope, cgrad, insolation
jd <- JD(as.POSIXct(as.Date("2016-06-01")))

Radiation at location x will be estimated as a function of, among other things, the solar zenith angle at
x: the angle between the zenith at x and the centre of the sun’s disc. The solar zenith angle at x can be
calculated as a function of the unit vector in the direction of the sun (from x) , using the sunpos function.
In turn, using the function sunvector the unit vector to the sun at x can be calculated as a function of the
julian-day, and the location of x expressed in the non-projected, latitude-longitude, reference system.

To obtain the latitude-longitude coordinates of the raster grid, we obtain the coordinates in the Swiss
coordinate system using the function coordinates from the R package sp and inverse-project them, back into
the latitude-longitude CRS using the function project from the R package rgdal. The projection inversion
is called by passing the value TRUE to the argument inv.

Next we btain solar zenith angle:

library(rgdal) # projInfo, project, readOGR
lonLat <- project(coordinates(dem), proj = prj, inv = TRUE)
sunv <- sunvector(jd, lonLat[, 1], lonLat[, 2], 0)
zenith <- sunpos(sunv)[, 2]

The insolation function estimates radiation as a function of solar zenith angle (zenith), julian-day (jd),
elevation (height) and temperature (tempK ), for which we have an estimate at every relevant location, and,
visibility (visibility), relative humidity (RH ), ozone thickness (03 ) and albedo (alphag), for which we have no
estimate and, in the context of this exercise, set arbitrary but plausible values for these arguments.

Finally we estimate solar radiation and create radiation raster:

rad <- insolation(zenith = zenith, jd = jd, height = values(dem),
visibility = 20, RH = 80, tempK = values(temperature.r) +

273.15, O3 = 0.002, alphag = 0.15)
radiation <- dem
values(radiation) <- rad[, 1]

Now we plot estimated solar radiation raster:

par(mar = c(0, 0, 0, 0))
plot(radiation, box = F, axes = F, col = rev(heat.colors(20)))
plot(ch.sp, add = T)
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Figure 11: Map of radiation on the 6th of June (raster) for all Switzerland estimated using insolation function.

2.2.3 Moisture index

Birds rely on water to survive so it is likely that a good predictor of bird species richness at a location will be
water availability. We will use the moisture index in the month of July, the driest and of greatest significance
to species occurrence, as a proxy for water availability.

The monthly moisture index, mind, is calculated as monthly precipitation minus monthly potential evapo-
transporation (PET). Monthly PET was calculated using the Turc formula:

PET = 0.4T (Rs + 50)
T + 15 (3)

Where:

• T is monthly mean temperature in degrees celsius, and
• Rs is monthly mean global radiation (cal/cm2)

Monthly mean global radiation is calculated as:

Rs = (100− C)Rd
100 (4)

Where:

• C is monthly cloudiness (%), and
• Rd is monthly potential direct solar radiation.
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Potential direct solar radiation was calculated by using the empirical formula of Muller (1984) which is valid
between 1500 m and 4000 m and with which radiation can be calculated for given sun positions (azimuth and
zenith angle) from latitude and elevation. Hourly values of radiation for level surfaces were calculated and
corrected for topographic overshadowing, actual slope, and aspect values from the DEM. Daily values were
then calculated by integrating the hourly intervals using the Simpson-integral (Press et al. 1989). Because
these calculations are very time consuming, monthly totals were derived from a linear interpolation of 10-day
intervals.

Monthly moisture indices were calculated for all months of July for which input variables were available at
all raster cell locations (1000m x 1000m resolution). Interpolation models for all input variables were first
developed so that moisture index could be calculated at all raster cell locations. The July moisture index
rasters were then averaged to obtain the moisture index raster which we now load.

We load moisture index raster:

MIND <- raster("../data/mind_1km")

We now plot the moisture index raster:

par(mar = c(0, 0, 0, 0))
plot(MIND, col = brewer.pal(9, "PuBu"), box = F, axes = F, legend = T)
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Figure 12: Map of moisture index (raster) for all of Switzerland

Question 2.2.5 Can you propose other environmental predictors that could influence bird species richness?

Question 2.2.6 According to your knowledge of the birdś ecology, which are the best predictors of bird species
richness in Switzerland?
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2.3 Landscape predictors

2.3.1 Sum of forest edges

Forest edges provide a diverse and structured habitat favoured by many different species meaning it could be
a good predictor of bird species richness. The forest edges raster, which we willnow load, was obtained from
the Swiss Federal Office of Topography (swisstopo).

We load and plot forest edges raster:

edge <- raster("../data/forest-edges_bl/forest-edges_bl.rst")
# table(values(edge))
par(mar = c(0, 0, 0, 0))
plot(edge, col = c("white", "green4"), axes = F, box = F)
plot(ch.sp, add = T)
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Figure 13: Map of the location of forest edges (raster) over Switzerland.

It is desirable to work with raster layers that have the same grid. A raster grid is uniquely defined by an
origin, a point that is one of the intersections of grid lines, and its resolution, the magnitude of each cell-side.
In the R package raster the origin is defined as the point closest to (0, 0) that is still an intersection of grid
lines. The function origin and res from the R package raster return the origin and resolution of a raster
object.

We check that the forest edge and elevation rasters share the same grid:

origin(edge)

## [1] 0 0

23

https://www.swisstopo.admin.ch/content/swisstopo-internet/en/online/calculation-services/_jcr_content/contentPar/tabs/items/documents_publicatio/tabPar/downloadlist/downloadItems/20_1467104436749.download/refsyse.pdf


origin(dem)

## [1] -12.5 -12.5

res(edge)

## [1] 100 100

res(dem)

## [1] 1000 1000

We can see that the elevation and forest edge rasters (dem and edge), have different resolutions and are not
aligned since they have a different origin. We can visualize this by plotting the raster grids.

We want to zoom in on a part of the raster grids to better visualize them. The range of a grid in its x
and y coordinates is called its extent. The function extent from the R package raster creates an extent
object by calculating the extent of a raster object or matrix of coordinates, or, from a vector of four numbers
which includes the maximum and minimimum x and y values. We will create an square extent of 25 cells by
inputing the desired maximum and miniminum x and y values, using the center of the Switzerland raster
grid as reference point.

We compute a 5 x 5 cell extent inside elevation (dem) raster. First we locate center of elevation raster:

center <- c(x = (dem@extent[1] + dem@extent[2])/2, y = (dem@extent[3] +
dem@extent[4])/2)

Now we use center to create a small extent of 5 x 5 cells corresponding to a square of 5km x 5km:

extSmall <- extent(c(center[1] - 500 - 2 * 1000, center[1] +
500 + 2 * 1000, center[2] - 500 - 2 * 1000, center[2] + 500 +
2 * 1000))

We now wish to obtain the coordinates of the cell centers, together with the corresponding raster values,
for those cells that are within the reduced extent. The crop function from the R package raster returns
a geographic subset of the first raster argument as specified by the extent object (or the extent of a raster
object) that is the second argument.

We now obtain the cell coordinates for cell centers of both grids within this new extent:

cells_edge <- coordinates(crop(edge, extSmall))
cells_dem <- coordinates(crop(dem, extSmall))

Now we append raster values for both raster objects that are within this new extent:

cells_edge <- cbind(cells_edge, values(crop(edge, extSmall)))
cells_dem <- cbind(cells_dem, values(crop(dem, extSmall)))

Next we plot the grids and raster values:
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plot(cells_edge[, 1:2], pch = 3, xlab = "", ylab = )
lines(cells_dem[, 1:2], type = "p", col = "blue", pch = 3)
text(cells_edge[, 1:2] + 50, labels = cells_edge[, 3], cex = 0.3)
text(cells_dem[, 1:2] + 50, labels = round(cells_dem[, 3]), cex = 1,

col = "blue")
legend("bottomright", col = c("black", "blue"), legend = c("number of forest edges",

"elevation"), pch = c(4, 3), text.col = c("black", "blue"),
bg = "white")
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Figure 14: Elevation and forest edges raster grids for 5000m x 5000m extent at the center of entire raster grid.

First we observe that the forest edge raster has a much higher resolution than the elevation raster. We need
to transform the forest edge raster so that it has the same grid (same origin and resolution) as the elevation
raster permitting us to combine them in our analysis. We can achieve this using the aggregate function
from the R package raster to obtain a sum of edges raster at 1000m x 1000m resolution. The aggregate
function takes three main arguments:

• x: the raster object to aggregate,
• fact: aggregation factor, i.e. the number of current cells that will make up the side of one of the new

cells, and,
• fun: the function to apply to summarize the raster values of the fact2 (in this case 10ˆ2=100) cells.

In this case we are interested in how many forest edges lie within a 1000m x 1000m cell so we use sum as
argument value for fun.

We aggregate the forest edge raster at 1km:

edge.sum <- aggregate(edge, fact = 10, fun = sum)

Now we get cell coordinates for cell centers of aggregated grid and append aggregated raster values:
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cells_edge.sum <- coordinates(crop(edge.sum, extSmall))
cells_edge.sum <- cbind(cells_edge.sum, values(crop(edge.sum,

extSmall)))

Next we plot grid and raster values of aggregated forest edge raster:

plot(cells_edge.sum[, 1:2], pch = 3, xlab = "", ylab = "")
lines(cells_dem[, 1:2], type = "p", col = "blue", pch = 3)
text(cells_edge.sum[, 1:2] + 70, labels = round(cells_edge.sum[,

3]), cex = 0.7)
text(cells_dem[, 1:2] + 70, labels = round(cells_dem[, 3]), cex = 0.9,

col = "blue")
legend("bottomright", col = c("black", "blue"), legend = c("number of forest edges",

"elevation"), pch = c(4, 3), text.col = c("black", "blue"),
bg = "white")
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Figure 15: Elevation raster grid and forest edges raster grid aggregated to the same resolution. Zoom in of
5000m x 5000m extent at the center of entire raster grid.

Although, the resolution is now the same, the grids are clearly not aligned. The resample function from
the R package raster will work out the values of the first raster (the one that needs transforming) at the
coordinates of the second (our model raster) by interpolation and then change the coordinates of the first to
those of the second.

Now we align grids by resampling grid points:

edge.sum <- resample(edge.sum, dem)

Next we calculate cell center coordinates of aggregated and aligned forest edge grid and append interpolated
raster values:
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cells_edge.sum <- coordinates(crop(edge.sum, extSmall))
cells_edge.sum <- cbind(cells_edge.sum, values(crop(edge.sum,

extSmall)))

Now we plot grid and raster values of aggregated and aligned forest edge raster:

plot(cells_edge.sum[, 1:2], pch = 3, xlab = "", ylab = "")
lines(cells_dem[, 1:2], type = "p", col = "blue", pch = 3)
text(cells_edge.sum[, 1:2] + 70, labels = round(cells_edge.sum[,

3]), cex = 0.7)
text(cells_dem[, 1:2] - 70, labels = round(cells_dem[, 3]), cex = 0.9,

col = "blue")
legend("bottomright", col = c("black", "blue"), legend = c("number of forest edges",

"elevation"), pch = c(4, 3), text.col = c("black", "blue"),
bg = "white")
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Figure 16: Elevation raster grid and forest edges raster grid aggregated and aligned. Zoom in of 5000m x
5000m extent at the center of entire raster grid.

Both rasters now have the same grid.

Next we will filter the edge sum raster using the mask function to discard raster values that fall outside
Switzerland replacing them with NA values. We plot resulting raster:

edge.sum <- mask(edge.sum, dem)
par(mar = c(0, 0, 0, 0))
plot(edge.sum, col = brewer.pal(9, "Greens"), axes = F, box = F)
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Figure 17: Map of sum of forest edges (raster) in Switzerland. This raster counts the number of 100m x 100m
forest edge cells within each 1000m x 1000m cell.

2.3.2 Land-use

We will use land-use information in order to identify the forest habitat that is cruicial for bird species to
proliferate and prosper. We will also use this information to construct landcover diversity indicators since
birds benefit from a varied habitat.

The land-use categories according to the Swiss Federal Statistics Office’ (SFSO) Standard Nomenclature
NOAS04 are:

Code Land-use type

Buildings
———- ———————————————————————————-
01 industrial and commercial buildings
02 grounds adjacent to industrial and craft buildings
03 single and duplex housing
04 grounds adjacent to single and duplex housing
05 houses in rows and in terraces
06 grounds adjacent to houses in rows and terraces
07 residential buildings
08 grounds adjacent to residential buildings
09 public buildings
10 grounds adjacent to public buildings
11 agricultural buildings ??? whats the difference with 4
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Code Land-use type

12 grounds next to agricultural buildings
13 unspecified buildings
14 grounds next to unspecified buildings
———- ———————————————————————————-
Forest
———- ———————————————————————————-
50 normal Forest
51 narrow forest
52 reforested area (human reforestation)
53 recently suppressed forest
54 devastated woodland area
55 sparse forest (on agricultural land)
56 sparse forest (on non-agricultural land)
57 low-canopy forest
58 groves, hedges
59 groups of trees (on agricultural land)
60 groups of trees (on non-agricultural land)
———- ———————————————————————————-
Grasslands
——— ———————————————————————————-
42 natural grassland
43 local pasture
44 overgrown local meadows and pastures
45 mowed pasture
46 favourable pastures
47 overgrown pastures
48 rocky pastures
49 Alp sheep pastures
65 non-agricultural herbaceous vegetation
———- ———————————————————————————-
others
———- ———————————————————————————-
15-41, 61-64 and >65 other land covers
————- ———————————————————————————-

Table 5: SFSO land use categories according to standard nomencla-
ture NOAS04
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We will now load the land-use census of 2009 carried out by the SFSO. Raster values range from 1-72 where
each code value represents different land-uses according to above table.

We load and plot land-use map of Switzerland (2009 version):

lu09 <- raster("../data/landUse/as09_72.tif")
par(mar = c(0, 0, 0, 0))
plot(lu09, box = F, axes = F, col = rainbow(73))
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Figure 18: Map of land use in Switzerland in 2009 (raster). Classification made by SFSO according to above
table.

2.3.3 Sum of forests

In addition to the sum of forest edges, we will now compute the total surface of forest for each cell of 1000m
x 1000m. Forests represent a basic resource of birds for food and and shelter so this could be an important
predictor.

2.3.3.1 Land-use classification

According to the Swiss Federal Statistics Office (SFSO) land-use can be divided into 72 categories. According
to above table we can classify land-use into 4 super-categories:

• buildings: 1-14
• grassland: 42-49 and 65
• forest: 50-60
• others: 15-41, 61-64 and >65

We will now reclassify the land-use reaster from 72 categories to 4 super categories.

Lets classify land-use type raster according to SFSO super-categories:
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categories <- c("building", "other", "grassland", "forest", "other")
glu09 <- lu09
values(glu09) <- as.factor(categories[as.numeric(cut(values(lu09),

breaks = c(0, 14, 41, 49, 60, 72), include.lowest = T))])
values(glu09)[which(values(lu09) == 65)] <- as.factor(categories)[3]

Now we plot super-category land-use raster:

categories <- levels(as.factor(categories))
par(mar = c(0, 0, 0, 0))
plot(trim(glu09), col = topo.colors(4), legend = F, axes = F,

box = F)
legend("bottomright", legend = categories, fill = topo.colors(4))

building
forest
grassland
other

Figure 19: Map of land use in Switzerland in 2009 (raster) according to super-categories. Classification made
by SFSO according to above table.

2.3.3.2 Sum of forests

First we reate forest location raster for 2009 and plot:

forest09 <- glu09 == 2
par(mar = c(0, 0, 0, 0))
plot(forest09, legend = F, axes = F, box = F)
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Figure 20: Map of forest locations (raster) in Switzerland in 2009.

We are interested in quantifying the amount of forest in a given 1000m x 1000m raster cell so we will use the
function aggregate and pass sum to the argument fun (function) so that we obtain a count of the number of
100m x 100m cells classified as forest inside each 1000m x 1000m cell.

We now aggregate forest raster to count number of 100m x 100m forest cells inside each 1000m x 1000m cell
with aggregate function and align resulting sum of forests raster with elevation raster using the resample
function:

sum.forest09 <- aggregate(forest09, fact = 10, fun = sum)
sum.forest09 <- resample(sum.forest09, dem)
values(sum.forest09)[which(values(sum.forest09) < 0)] <- 0

Now we plot aggregate and aligned sum of forests raster:

par(mar = c(0, 0, 0, 0))
plot(sum.forest09, legend = T, axes = F, box = F)
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Figure 21: Map of sum of forests (raster). This raster counts the number of 100m x 100m cells with a forest
land-use in 2009 within each 1000m x 1000m cell.

2.3.4 Landscape diversity

We will compute the landscape diversity of all 1000m x 1000m cells. Landscape diversity provides a metric of
the variety of habitats (e.g. normal forest, low-canopy forest, natural grassland etc) available to birds. A
more diverse 1000m x 1000m cell is expected to support a higher diversity of birds.

There are two main dimensions of diversity, richness and evenness, which we will measure with four indicators:

• Richness: Number of different species per unit area, and
• Evenness: Distribution of species, among those present.

The 2009 land use raster’s original resolution is 100m x 100m so we have that 100 cells at the sharper
resolution make up a single cell at the coarser resolution of 1000m x 1000m at which we are building the
response variable and predictors. Let:

• ni for i ∈ {1, 2, ..., k = 72} be the number of cells with land use i, and
• N = 100 be the total number of cells.

Then we can calculate the different indicators according to the following table:

Indicator Richness Evenness Formula

Number of species 3 7
∑k
i=1 1{ni>0}(ni)

—————— ————- ————- ——————————————————————————

Gini 7 3
∑k

i=1
∑k

j=1 |ni−nj |
2
∑k

i=1
∑k

j=1 ni

—————— ————- ————- ——————————————————————————
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Indicator Richness Evenness Formula

Simpson 3 3
∑k

i=1 ni(ni−1)
N(N−1)

—————— ————- ————- ——————————————————————————

Shannon 3 3 −
∑k
i=1

ni

N log ni

N

Table 6: Diversity indicators

The fun argument of the aggregate function can be defined by the user. In subsection 2.3.4.1 we calculate
the diversity indicators for each 1000 x 1000 cell by passing to the argument fun the appropriate functions.

2.3.4.1 Number of different land-uses

We first count the number of unique land-use categories (2009) of 100m x 100m cells within each 1000m x
1000m cell:

num.diff <- function(x, na.rm) {
aux <- x[which(!is.na(x))]
return(length(unique(aux)) * length(aux)/length(x))

}
div.num.diff <- aggregate(lu09, fact = 10, fun = num.diff)

Now we align grid of newly created raster with that of elevation grid using resample function:

div.num.diff <- resample(div.num.diff, dem)
pander(summary(values(div.num.diff)))

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

-5.783 0 3.89 5.777 10.94 30.24 6775

We can see that the newly created and aligned raster has some negative values which is due to the interpolation
of values necessary to align the raster grids. Our diversity indicators do not take values less than zero so we
assign a zero value to negative valued cells.

Finally we set value of currently negative valued raster cells to zero:

values(div.num.diff)[which(values(div.num.diff) < 0)] <- 0
div.num.diff <- mask(div.num.diff, dem)

2.3.4.2 Simpson indicator (also known as Herfindahl indicator)

We calculate the Simpson indicator for each 1000m x 1000m cell using all 100m x 100m cells within (we also
align raster grids and set negative values to zero):

simpson <- function(x, na.rm) {
aux <- x[which(!is.na(x))]
tab <- table(aux)/length(aux)
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n <- length(tab)
simpson <- sum(tab^2)
simpson <- (simpson - 1/n)/(1 - 1/n)
return(simpson)

}
div.simpson <- aggregate(lu09, fact = 10, fun = simpson) #align grids
div.simpson <- resample(div.simpson, dem)
# summary(values(div.simpson))
values(div.simpson)[which(values(div.simpson) < 0)] <- 0 #set negative values to zero

2.3.4.3 Gini indicator

We calculate the Gini indicator for each 1000m x 1000m cell using all 100m x 100m cells within (we also
align raster grids and set negative values to zero):

gini <- function(x, na.rm) {
aux <- x[which(!is.na(x))]
tab <- table(aux)
n <- length(tab)
if (n > 0) {

G <- sum(sapply(1:n, function(j) sapply(1:n, function(i) abs(tab[i] -
tab[j]))))/(2 * n * sum(tab))

} else {
G <- NA

}
return(G)

}
div.gini <- aggregate(lu09, fact = 10, fun = gini) #align grids
div.gini <- resample(div.gini, dem)
# summary(values(div.gini))
values(div.gini)[which(values(div.gini) < 0)] <- 0 #set negative values to zero

2.3.4.4 Shannon indicator (entropy)

We calculate the Shannon indicator for each 1000m x 1000m cell using all 100m x 100m cells within (we also
align raster grids and set negative values to zero):

shannon <- function(x, na.rm) {
aux <- x[which(!is.na(x))]
tab <- table(aux)/length(aux)
Shannon <- -sum(tab * log(tab))
return(Shannon)

}
div.shannon <- aggregate(lu09, fact = 10, fun = shannon)
div.shannon <- resample(div.shannon, dem) #align grids
# summary(values(div.shannon))
values(div.shannon)[which(values(div.shannon) < 0)] <- 0 #set negative values to zero
div.shannon <- mask(div.shannon, dem)

2.3.4.5 Compare land-use diversity indicators

First lets plot all four land-use diversity indicator rasters:

35



par(mar = c(3, 0.1, 1, 0.1), mfrow = c(2, 2))
plot(div.num.diff, axes = F, box = F, col = brewer.pal(9, "YlOrRd"),

legend = F)
plot(div.num.diff, legend.only = T, horizontal = T, add = T,

col = brewer.pal(9, "YlOrRd"), smallplot = c(0.25, 0.75,
0.08, 0.1))

plot(div.simpson, axes = F, box = F, col = brewer.pal(9, "YlOrRd"),
legend = F)

plot(div.simpson, legend.only = T, horizontal = T, add = T, col = brewer.pal(9,
"YlOrRd"), smallplot = c(0.25, 0.75, 0.08, 0.1))

plot(div.gini, axes = F, box = F, col = brewer.pal(9, "YlOrRd"),
legend = F)

plot(div.gini, legend.only = T, horizontal = T, add = T, col = brewer.pal(9,
"YlOrRd"), smallplot = c(0.25, 0.75, 0.24, 0.26))

plot(div.shannon, axes = F, box = F, col = brewer.pal(9, "YlOrRd"),
legend = F)

plot(div.shannon, legend.only = T, horizontal = T, add = T, col = brewer.pal(9,
"YlOrRd"), smallplot = c(0.25, 0.75, 0.24, 0.26))
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Figure 22: Map of land-use diversity (raster) in 2009 in Switzerland using four different indicators: number
of different land uses (top-left), Simpson indicator (top-right), Gini indicator (bottom-left) and Shannon
indicator (bottom-right). Each indicator was calculated for all 1000m x 1000m cells using all 100m x 100m
cells that lie within.

We want to observe the relationship between our different diversity indicators to see if they indeed measure
different dimensions of land-use diversity and we are justified in including them all in our model builiding
process.
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We can use the normal function plot from R package graphics to create matrix scatter plots however the
pairs function from the same package additionally allows us to fit a smoothing line to the scatter and to use
the redundant upper triangle pannels to display spearman correlations.

Now we create diversity indicator dataframe with indicators as columns and locations as rows:

diversity.df <- cbind(as.data.frame(div.num.diff), as.data.frame(div.simpson),
as.data.frame(div.gini), as.data.frame(div.shannon))

colnames(diversity.df) <- c("num.diff", "simpson", "gini", "shannon")
diversity.df <- na.omit(diversity.df)
# head(diversity.df)

Next we define function to calculate and format correlations to be displayed in upper triangle of pairs plot:

panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor,
...) {
usr <- par("usr")
on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y, method = "spearman"))
txt <- format(c(r, 0.123456789), digits = digits)[1]
txt <- paste0(prefix, txt)
if (missing(cex.cor))

cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * r)

}

Finally we call customized matrix scatter plot:

pairs(diversity.df, lower.panel = panel.smooth, upper.panel = panel.cor)

37



num.diff

0.0 0.4 0.8

0.28 0.37

0.0 1.0 2.0 3.0

0
10

20
30

0.83

0.
0

0.
4

0.
8

simpson 0.63 0.70

gini

0.
0

0.
4

0.
8

0.09

0 5 10 20 30

0.
0

1.
5

3.
0

0.0 0.2 0.4 0.6 0.8

shannon

Figure 23: Scatter plots and Spearman correlations showing relationship between the four land-use diversity
indicators.

# cor(diversity.df) cor(diversity.df, method='spearman')

We can see that number of different land-uses and the Gini indicators have a low correlation since they
measure different dimensions of land-use diversity: richness and evenness respectively. Also, although the
Simpson and Shannon indicators measure both evenness and richness, the Simpson indicator puts more weight
on the evenness dimension, as it is more correlated to the Gini indicator than to the number of different
land-uses, while the Shannon indicator puts more weight on the richness dimension, as it is more correlated
to the number of different land-uses than to the Gini indicator. We conclude that the four indicators have
sufficiently varied information to justify including them all in the generalized regression analysis of subsection
3.1.3. We could perhaps exclude either the number of different land-uses or the Shannon indicator as they are
highly correlated and their relationship is mostly linear, however we will let the step-wise selection strategy
of subsection 3.1.3 decide if any of the indicators should be excluded.

2.4 Water based predictors

In this section we will create a predictor of distance to water. Water is an important habitat and food source
for many bird species and therefore distance to water might be an important predictor of bird species richness.

2.4.1 Rivers and Lakes

We want to create a distance to water raster however we only have available shapefiles of the lakes and rivers
of Switzerland. The strategy will be to load lakes and rivers shape files, transform them into rasters, combine
them into a water raster, and then calculate the distance to water for every cell in the 1000km x 1000km
raster grid. We will later use the lake raster to identify potential reserve sites since one of the criteria will be
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to avoid locating the reserve site on a lake. Both lakes and rivers shapefiles were obtained from the Swiss
Federal Office of Topography (swisstopo).

The rasterize function from the R package raster can be used to make a raster based on shape object
(SpatialPolygons, SpatialLines, SpatialPoints, SpatialPolygonsDataFrame, etc). It can be used by supplying
the following parameters:

• x A shape object (SpatialPolygons, SpatialLines, SpatialPoints, SpatialPolygonsDataFrame, etc) to be
converted to a raster,

• y A raster object, which provides the template raster grid for new raster,
• field A vector having the same length as the number of shapes in x. It can be one of the associated

dataframe columns in case of a SpatialPolygonsDataFrame type shape object or a separate vector, and,
• fun A function which will act on the field argument.

For all shape objects in x that fall within a certain cell of y, the function will summarize the values of field
corresponding to those shapes and assign this value to the cell. This is done for all cells. The result is a
raster with the same grid as y. If function fun is not specified it defaults to last which takes the value of field
corresponding to the last shape object in x that falls in the given cell of y.

A polygon is considered to fall within a cell if it covers the center. A line is considered to fall within a cell if
any part of it goes inside the cell.

The readOGR function from the R package rgdal reads can be used to read shape files (file.shp). The data
source name (dsn argument) is the folder (directory) where the shapefile is, and the layer is the name of the
shapefile (without the .shp extension).

When certain polygon files, such as the lakes of Switzerland for example, are not available are not available it is
possible to create or draw them oneself using a guiding image, such as a satellite image or a topographic map,
and the drawPoly function from the R package raster. The function should be called, without arguments,
after the guiding image has been plotted. One clicks on successive points that define the desired polygon and
double-clicks when finished. We display the necessary code although, since the procedure is interactive in
nature, we will not see the results.

The writeRaster function from the R package raster can be used to save a given raster object, given as
first argument, in raster format (file.grd) by choosing raster value for the argument format. The name of the
filename should be given as a string value for the argument filename.

First we load topographic map of Switzerland:

topo <- raster("../data/st_cn500/krel500.tif")

Next we plot topographic map then draw, for example, lac Leman and lake Zurich:

plot(topo)
lacLeman <- drawPoly()
plot(topo)
lakeZurich <- drawPoly()

We can then merge two lake polygons, convert into a lakes raster and save them:

lakes <- lacLeman + lakeZurich
lakes.r <- rasterize(lakes, dem, field = 1)
writeRaster(lakes.r, filename = "../data/myLakes/myLakes", format = "raster")

Now we plot topographic map of Switzerland and overlay cantonal borders and user-created lakes raster:
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par(mar = c(0, 0, 0, 0))
plot(topo)
plot(ch.sp, add = T)
plot(lakes.r, add = T, col = "blue", legend = F)
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Figure 24: Topographic map (raster) of Switzerland with cantonal borders (shapefile) and Lac Leman and
Lake Zurich rasters created by the user.
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Next we load lakes shape file with all lakes of Switzerland and convert to raster using rasterize function:

Lakes <- readOGR(dsn = "../data/Lakes", layer = "Lakes", p4s = prj)

## OGR data source with driver: ESRI Shapefile
## Source: "../data/Lakes", layer: "Lakes"
## with 130 features
## It has 9 fields

## Warning in readOGR(dsn = "../data/Lakes", layer = "Lakes", p4s = prj): p4s= argument given as: +init=epsg:21781
## and read as: +proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000 +ellps=bessel +units=m +no_defs
## read string overridden by given p4s= argument value

Lakes.r <- rasterize(x = Lakes, y = dem, field = rep(1, length(Lakes)))

Now we load rivers shape file with rivers of Switzerland and convert to raster using rasterize function:

river <- readOGR(dsn = "../data/Rivers", layer = "Rivers", p4s = prj)

## OGR data source with driver: ESRI Shapefile
## Source: "../data/Rivers", layer: "Rivers"
## with 125 features
## It has 6 fields

## Warning in readOGR(dsn = "../data/Rivers", layer = "Rivers", p4s = prj): p4s= argument given as: +init=epsg:21781
## and read as: +proj=somerc +lat_0=46.95240555555556 +lon_0=7.439583333333333 +k_0=1 +x_0=600000 +y_0=200000 +ellps=bessel +units=m +no_defs
## read string overridden by given p4s= argument value

river.r <- rasterize(x = river, y = dem, field = rep(1, length(river)))

The R package rgeos contains many useful functions for manipulating, transforming and exploiting shape
files. Here we will use the gUnion function to merge the river SpatialLinesDataFrame with the Lakes
SpatialPolygonsDataFrame into a SpatialCollections object. Subgeometries which intersect are merged into
one, and those that do not are simply added to the list of shapes.

We create a water shapefile by joining river and lakes shape files and plot:

library(rgeos) #gBoundary, gUnion, gBuffer

## rgeos version: 0.3-20, (SVN revision 535)
## GEOS runtime version: 3.4.2-CAPI-1.8.2 r3921
## Linking to sp version: 1.2-3
## Polygon checking: TRUE

class(river)

## [1] "SpatialLinesDataFrame"
## attr(,"package")
## [1] "sp"
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class(Lakes)

## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"

water <- gUnion(river, Lakes)
class(water)

## [1] "SpatialCollections"
## attr(,"package")
## [1] "rgeos"

par(mar = c(0, 0, 0, 0))
plot(dem, axes = F, box = F)
plot(water, col = "light blue", add = T)

1000

2000

3000

4000

Figure 25: Map of water (lakes and rivers) in Switzerland plotted as shapes over map of elevation (raster).

We create a water raster file by joining river and lakes rasters and plot:

water.r <- river.r | Lakes.r
par(mar = c(0, 0, 0, 0))
plot(dem, axes = F, box = F)
plot(water.r, col = "light blue", add = T, legend = F)
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Figure 26: Map of water (lakes and rivers) in Switzerland plotted as raster over map of elevation (raster).

Notice that for rasters having values of 0/1, or FALSE/TRUE, the logical operators “|” (or) can be used to
create the union raster. Likewise, the logical operato “&” (and) can be used to create intersection rasters,
and logical operators such as “>,<=,==” (greater than, less than or equal to, equal to) can be used to create
rasters consisting of logical values.

2.4.2 Water buffer

We will create a water buffer shapefile showing polygons that enclose all locations that are either water
locations (lakes or rivers) or are within a 2km distance of a water location. This will be done for illustrative
purposes and not to build any bird species richness predictors.

To create a buffer with respect to a shape object it is preferable to work with a shape file such as a
SpatialPolygon than with a raster object. Rasters are not actually shape objects although they can be used
to represent them by indicating which cells are occupied by the shape. However, since rasters use a grid, the
outline of the shape will always be jagged and the accuracy of the shape representation dependent on the
resolution of the grid. On the other hand, working with shape files can be expensive if the number of shapes
is large. In these examples the number of shapes is manageable so we will work with the gBuffer function
from the rgeos package which works with shape objects. Further on we will create a buffer for buildings, of
which there are a great quantity, and so we will work with the buffer function from the raster package
which works on raster objects.

The gBuffer function takes two main parameters, a shape object, and the width, in the units of the coordinate
reference system, in our case meters. It expands the shape object to include the area within the specified
width.

First we create a shape object with a 2km buffer for water bodies in Switzerland:

WaterBuffer <- gBuffer(water, width = 2000)

Now we plot cantonal borders of Switzerland and overlay water buffer shapefile and water shapefile:
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par(mar = c(0, 0, 0, 0))
plot(ch.sp, axes = F)
plot(WaterBuffer, col = "light blue", add = T)
plot(water, add = T, col = "blue")

Figure 27: Map of water (lakes an rivers) in Switzerland (shapefile) and 2 km river buffer (shapefile).

Question 2.4.1 How many bird richness observations are less than 500m distant from the rivers?

2.4.3 Distance to water

We now build the distance to water raster to use as a predictor of bird species richness.

If a single raster is used as argument for the distance function, from the package raster, it computes the
distance, for all cells that are NA, to the nearest cell that is not NA, in the units of the underlying coordinate
reference system. Cells that are not NA are assigned a value (distance) of zero. Since our water raster only
has TRUE values for cells where there is a river or lake we can use this function to calculate the distance
from each non-water cell to the nearest water cell.

We first compute distance to water using distance function:

water.dist <- distance(water.r)

Since all cells that are not water have a value of NA in the water raster, the distance function also calculated
the distance to water for cells that fall outside of Switzerland.

Now we assign NA to cells that fall outside of Switzerland by using the mask function with the elevation
raster as our template:
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water.dist <- mask(water.dist, dem)

Finally we plot distance to water raster:

par(mar = c(0, 0, 0, 0))
plot(water.dist, box = F, axes = F, col = brewer.pal(100, "Spectral"))

0

5000

10000

15000

Figure 28: Map of the distance to water (lakes and rivers) plotted as a raster.

Question 2.4.2 Observe the different layers of information we have loaded and built. What are the differences
between the shape files (SpatialPolygons, SpatialLines, SpatialPoints), the raster files and dataframes? What
are the resolution and origin of the different layers?

Question 2.4.3 How are all the predictors uploaded and created relevant in explaining bird species richness?

3 Modeling species richness and reserve selection

3.1 Modeling bird species richness

We will buid a Genearlized Linear Model (GLM) for bird species richness based on the predictors we have
loaded and built. First we review some of the theory related to GLMs as a reference for the subsequent
analysis.

3.1.1 Generalized Linear Model (GLM) theory

The classic linear model can be described by the following equation:
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yi = E[yi|xi] + εi = βTxi + εi (5)

where:

• y is the response variable,

• x is a vector of predictors, and

• ε is the error term, a random variable such that:

– mean is zero: E[ε] = 0,
– variance is constant: V ar[ε] = σ2,
– independent identically distributed,
– unbounded support,
– typically we assume yi ∼ N(µi, σ2)

Although this is a useful model it has two important restrictions:

1. The range of y must not be restricted since the range of E[y|x] = βTx ∈ (−∞,∞) is not. This is why y
and ε are assumed to have a distribution with unbounded support such as the normal distribution.

2. The variance of y must be constant.

Here our aim is modeling bird species richness which ranges from 0 to ∞ and so, does not correspond to the
properties of the classic linear regression model.

GLMs address both these issues. Like the linear model, a generalized linear model consists of a linear predictor
f(x) = βTx and, additionally, two functions:

• A link function g(µ) that describes how the mean depends on the linear predictor:

g(µ) = g(E[y|x]) = βTx (6)

This allows us to have a response variable with a restricted range. The function g could, a priori, be
any function such that if E[y|x] ∈ (a, b) then g(E[y|x]) ∈ (−∞,∞).

• A variance function V (µ) that describes how the variance depends on the mean:

V ar[yi] = φV (E[y|x]) = φV (µ) (7)

where φ is a constant.

3.1.1.1 Normal response

Assume our data is distributed normally such that:

• yi ∼ N(µi, σ2)
• µi = E[yi|xi] = βTxi
• V ar[yi|xi] = σ2
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Since µi ∈ (−∞,∞), a valid choice for the link function is:

g(µ) = µ ∈ (−∞,∞) (8)

Also since V ar[yi|xi] = σ2 we have that V (µ) = 1. Since a normal variable y can be written as the sum of
its expectation µ and a zero mean normal with the same variance σ2 as y we see that for this choice of link
function we recover the classic linear model:

yi = µi + εi = g−1(βTxi) + εi = βTxi + εi (9)

where ε ∼ N(0, σ2).

3.1.1.2 Bernoulli response

Assume our data is distributed Bernoulli such that:

• yi ∼ Bernoulli(pi)
• pi = E[yi|xi] = βTxi
• V ar[yi|xi] = pi(1− pi)

Since pi ∈ (0, 1), a valid choice for the link function is the log-odds ratio or logit function:

g(p) = log p

1− p ∈ (−∞,∞) (10)

Also since V ar[yi|xi] = pi(1− pi) we have that V (p) = p(1− p). For this choice of link function we obtain
the logistic regression model:

E[yi|xi] = pi = g−1(βTxi) = eβ
T xi

1 + eβT xi
(11)

V ar[yi|xi] = pi(1− pi) (12)

Another valid choice for the link function is the probit function:

g(p) = Φ−1(p) ∈ (−∞,∞) (13)

where Φ(p) is the normal cumulitive distribution function. This choice of link function leads to the probit
regression model.

For species distribution models where the response variable indicates the presence (yi = 1) or absence (yi = 0)
of a species at sampled location a bernoulli response variable is appropriate and, a priori both the logit or
probit functions are valid choices for the link function.
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3.1.1.3 Poisson response

Assume our data is distributed Poisson such that:

• yi ∼ Poisson(λi)
• λi = E[yi|xi] = βTxi
• V ar[yi|xi] = λi

Since λi ∈ (0,∞), a valid choice for the link function is the log function:

g(λ) = log λ ∈ (−∞,∞) (14)

Also since V ar[yi|xi] = λi we have that V (λ) = λ. For this choice of link function we obtain the Poisson
regression model:

E[yi|xi] = λi = g−1(βTxi) = eβ
T xi (15)

V ar[yi|xi] = λi = g−1(βTxi) = eβ
T xi (16)

For species richness models where the response variable indicates the number of different species (yi = 0, 1, 2, ...)
of a species at a sampled location a poisson response variable is appropriate and, the log function is a valid
choice for the link function.

3.1.1.4 Residual analysis and diagnostics

In the classic linear regression setting the residuals are a natural quantity to study owing to the fact that the
response variable can be expressed as a location model:

yi = E[yi|xi] + ε = µi + ε (17)

meaning that the residuals ri = yi − µ̂i are estimators of the error term ε. As we have seen in subsection ??
in the linear regression setting we can look at certain plots of the residuals to verify model assumptions:

• The Tukey-Anscombe plot to check the unbiasedness of the model: E[ri] = 0
• The Scale-location plot to check the homoscedasticity of errors: V ar[ri] = k

• The normal Q-Q plot helps check that error term is distributed normally
• Cook and leverage plots help identify outliers: observations with atypical values for predictors (high

leverage) and which have high influence on model estimation (high Cook’s distance)..

For general linear models, in general we don’t know how the residual term ri = yi − µ̂i is distributed since
non-normal response variables y cannot, in general, be expressed as a location model y = µ + ε. We do
however know that if the variance of the response variable is non-constant, as in the Bernoulli and Poisson
case, then the residuals will also have non-constant variance. We also know that the residuals need not be
distributed normally so the Scale-location and normal Q-Q plots do not apply in the GLM setting.

In order to check for the unbiasedness of the model we look at a modified Tukey-Anscombe plot constructed
with Pearson residuals which are the residuals standardized by dividing by the estimated standard deviation
of the response variable. Standardizing the residuals helps us to visualize whether the expected value of the
residuals is zero for any given level of the linear predictor. The Cook and leverage plots to help identify
outliers also applies for GLMs.
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3.1.1.5 GLMs in R

We use the glm function from the stats package to fit our generalized linear model. Like the lm function the
glm function needs at least formula and data parameters where:

• formula could, for example, be y~poly(x,2)+ I(zˆ2) + I(w==0) + I(w>0):I(x<0) + I(w>0)*I(z<0),
where,

– the I() term is used to transform existing variables,
– the poly(x,n) term, creates a polynomial of degree n: x+ x2 + ...+ xn,
– I(w>0):I(x<0) term, creates an interaction term between the indicator functions 1w>0(w) and

1x<0(x), and
– I(w>0)*I(z<0) term, creates the indicator functions 1w>0(w) and 1z<0(x) and additionally their

interaction.

• data indicates the data.frame where the x,y,z,w variables are located.

Additionally glm needs a family parameter which indicates the type of dependent variable and the link
function to be used. For example:

• family= “binomial” or family=binomial(“logit”) indicates a binary dependent variable with logit link
function,

• family= binomial(“probit”) indicates a binary dependent variable with probit link function, and
• family= poisson indicates a poisson dependent variable (values in 0,1,2,. . . ) with a log link function.

As in the case with other R fitting functions which create model objects, the glm objects created by the
fitting function glm has available certain standard functions:

• summary: gives a summary of estimated parameters, their significance and the overall significance of
the model,

• plot: helps visualize he fitted model and/or gives model diagnostics to assess the validity of model
assumptions, and

• predict: applies the model to new data points, provided that the model predictors are available, to
predict the dependent variable (and probabilites in the case of glm objects).

• coef: provides model coefficients (the β’s in the case of linear and generalized linear models).
• fitted: provides fitted values (the ŷ’s)
• residuals: provides model residuals.

3.1.2 Extraction

We will now fit a GLM model for bird species richness based on the predictors loaded and built previously.

The predictors of bird species richness considered are the following:

1. Elevation based predictors:

a. elevation (dem)
b. estimated slope, (slope)

2. Climate based predictors:

a. estimated temperature (temperature.r)
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b. estimated solar radiation (radiation)
c. moisture index (MIND)

3. Landscape diversity predictors:

a. landscape diversity - no. of different land-uses (div.num.diff)
b. landscape diversity - Simpson indicator (div.simpson)
c. landscape diversity - Gini indicator (div.gini)
d. landscape diversity - Shannon indicator (div.shannon)

4. Forest predictors:

a. total forest edges (edge.sum)
b. total forest (sum.forest09)

5. Water based predictors:

a. distance to water (water.dist)

We create a matrix with response variable and predictors at locations where the response variable was
sampled:

bird.model.mat <- cbind(bird, elev = extract(dem, bird[, c("X",
"Y")]), est.slope = extract(slope, bird[, c("X", "Y")]),
est.temp = extract(temperature.r, bird[, c("X", "Y")]), est.rad = extract(radiation,

bird[, c("X", "Y")]), mind = extract(MIND, bird[, c("X",
"Y")]), div.num.diff = extract(div.num.diff, bird[, c("X",
"Y")]), div.simpson = extract(div.simpson, bird[, c("X",
"Y")]), div.gini = extract(div.gini, bird[, c("X", "Y")]),

div.shannon = extract(div.shannon, bird[, c("X", "Y")]),
edge.sum = extract(edge.sum, bird[, c("X", "Y")]), forest.sum = extract(sum.forest09,

bird[, c("X", "Y")]), water.dist = extract(water.dist,
bird[, c("X", "Y")]))

3.1.3 Model fit

Since bird species richness is a count of the number of observed species at various locations we use a Poisson
regression model.

We will make predictor-response curves, based on univariate Poisson models for bird species richness, for
each of the predictors, to aid our understanding and interpretation of the relationship between bird species
richness and the different predictors.

First we create a function to calculate the values of the predictor for which we wish to plot the response:

func1 <- function(x) {
xi <- seq(min(as.numeric(x), na.rm = T), max(as.numeric(x),

na.rm = T), length.out = 100)
return(xi)

}

Next we get equally spaced representative values of all predictors:
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toplot <- apply(bird.model.mat, 2, func1)
colnames(toplot) <- colnames(bird.model.mat)

Now create a vector of strings with all predictor names to aid in building the GLM formula:

predictors <- c("elev", "est.slope", "est.temp", "est.rad", "mind",
"div.num.diff", "div.simpson", "div.gini", "div.shannon",
"edge.sum", "forest.sum", "water.dist")

Finally we fit a univariate Poisson regression model for each predictor and use this model to get an estimate
of bird richness for the values of the predictors calculated previously and plot response curves:

par(mar = c(3, 3, 3, 3), mfrow = c(4, 4))
for (var in predictors) {

# choose predictor
vari <- bird.model.mat[, var]
mi <- glm(as.formula(paste("richness ~ poly(", var, ",2)")),

family = poisson, data = na.omit(bird.model.mat[, c("richness",
var)]))

plot(vari, bird.model.mat$richness, ylab = "richness", xlab = "",
main = var)

toploti <- data.frame(toplot[, var])
colnames(toploti) <- var
lines(y = predict(mi, newdata = toploti, type = "response"),

x = toplot[, var], col = "red")
}
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Figure 29: Univariate predictor vs. response scatter plots and fitted model curves. Red lines indicate the
number of bird species for a given level of the independent variable as predicted by corresponding univariate
GLM.

Notice that the univariate predictor-response curves imply that, the higher the temperature the more bird
richness there is, at least up until a certain threshold temperature after which the bird richness decreases
again.
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Now we fit a Poisson regression model with all the predictors that are available:

form <- as.formula(paste("richness", paste(paste("poly(", predictors,
",2)", sep = ""), collapse = " + "), sep = " ~ "))

m1.glm <- glm(form, data = na.omit(bird.model.mat), family = poisson,
maxit = 100)

Including too many predictors in the model can lead to overfitting the data and poor generalization of
the model. On the other hand including too few predictors can lead to sytematic errors and bias. This is
the bias-variance trade-off inherent to modeling in limited data settings. We try and strike a balance by
minimizing the Akakike Information Criterion (AIC) using the backward-forward stepwise selection strategy.
The AIC has two components:

• log-likelihood: higher log-likelihoods are rewarded with a lower AIC score, while
• number of predictors: higher number of predictors are penalized with a higher AIC score.

The backward-forward stepwise selection strategy consists of starting with all predictors and at each step
calculating the resulting AIC of:

1. Omitting any of the predictors currently included in the model,
2. Adding any of the predictors currently excluded from the model, and,
3. Leaving the model as it is.

If the lowest AIC results from taking action from 1 or 2 the corresponding predictor is omitted or added to
the model and we perform the next step. The stepwise search ends when the lowest AIC results from point 3:
leaving the model as it is.

In R backward-forward stepwise selection is implemented in the step function by choosing the value both for
the direction parameter.

We perform backward and forward stepwise selection of variables using step function:

m1.glm.step <- step(m1.glm, trace = F, direction = "both")
pander(m1.glm.step$anova, caption = "Summary of backward-forward stepwise selection")

Step Df Deviance Resid. Df Resid. Dev AIC

NA NA 235 268.8 1691
- poly(div.simpson, 2) 2 0.04473 237 268.9 1687
- poly(water.dist, 2) 2 0.2433 239 269.1 1684

- poly(elev, 2) 2 1.345 241 270.5 1681
- poly(est.slope, 2) 2 1.805 243 272.3 1679

Table 8: Summary of backward-forward stepwise selection

pander(summary(m1.glm.step)$coefficients, caption = "Summary of step glm model fit.")
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.457 0.01152 300 0
poly(est.temp, 2)1 -0.1183 0.8488 -0.1393 0.8892
poly(est.temp, 2)2 -0.6839 0.3664 -1.866 0.06199
poly(est.rad, 2)1 -3.241 0.8263 -3.923 8.761e-05
poly(est.rad, 2)2 -1.625 0.4521 -3.594 0.0003261
poly(mind, 2)1 -0.8744 0.2571 -3.401 0.0006704
poly(mind, 2)2 -0.1966 0.1882 -1.045 0.2962

poly(div.num.diff, 2)1 -0.7194 0.8835 -0.8143 0.4155
poly(div.num.diff, 2)2 -0.5101 0.3288 -1.551 0.1208

poly(div.gini, 2)1 1.082 0.6772 1.598 0.11
poly(div.gini, 2)2 -0.4931 0.2705 -1.823 0.06835

poly(div.shannon, 2)1 1.707 1.142 1.494 0.1351
poly(div.shannon, 2)2 0.972 0.3119 3.117 0.00183
poly(edge.sum, 2)1 0.3103 0.3466 0.8952 0.3707
poly(edge.sum, 2)2 -0.679 0.2266 -2.997 0.002728
poly(forest.sum, 2)1 0.2555 0.3515 0.727 0.4672
poly(forest.sum, 2)2 -1.401 0.3047 -4.599 4.244e-06

Table 9: Summary of step glm model fit.

Three out of the four diversity indices were selected covering both evenness and richness dimensions of
diversity suggesting both are important for bird species richness. All coefficients related to weather variables
are negative meaning the model predicts greater bird species richness in cooler, dryier and shadier locations.
This despite the fact that in the univariate analysis it seemed as though temperature had a positive effect on
bird species richness, at least up until a certain threshold temperature after which the bird richness decreases
again. However, univariate analysis is limited since we do not adjust for the effect of other variables.

Before going further we also fit the trivial model with no predictors and only a constant term as the linear
predictor:

g(E[y|x]) = log(µ) = β0 (18)

The trivial model will serve as a benchmark to check that our model achieves some improvement over simply
estimating the bird species richness as the sample mean species richness regardless of location.

We fit trivial model with no predictors

m0.glm <- glm(richness ~ 1, data = na.omit(bird.model.mat), family = poisson("log"))
pander(summary(m0.glm)$coefficients, caption = "Summary of trivial model fit.")

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.518 0.01068 329.3 0
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Estimate Std. Error z value Pr(>|z|)

Table 10: Summary of trivial model fit.

We will refer to the model with environmental predictors as the environmental model.

3.1.4 Model diagnostics

We want to check that our model is unbiased by creating a Tukey-Anscombe plot and checking that the
Pearson residuals do not have structure when compared to the linear predictor: the level of the Pearson
residuals should be more or less the same regardless of the level of the linear predictor. If we see some pattern
in the Pearson residuals when plotted against the linear predictor it means our model is biased. We also want
to create a standardized leverage vs. Cook’s distance plot to identify outliers in the dataset, points which
possibly don’t belong to the dataset and which have a big impact on the model estimation.

The R package boot has some useful functions for GLM diagnostics including glm.diag which, among other
things, calculates the Cook’s statistic and leverage of each observation which we use to identify outliers. High
Cook’s distance indicate influential data points - data points which are influencing the value of estimations -
while high leverage indicate data points with unusual values for the predictor variables. We are interested in
finding and possibly investigating further those points that have unusual predictor values and are influential
since these could be data points that don’t belong in our data set and are affecting model estimation.

For Cook’s statistic we use the threshold value of

8
n− 2p (19)

to define points with high Cook’s statistic (influential points), while for leverage we us the threshold value of

2p
n− 2p (20)

to define points with high leverage (unusual x values). These threshold values are recommended in the
documentation of the glm.diag function.

First we obtain Cook’s distance and leverage for all observations using glm.diag function:

library(boot) #glm.diag
# glm diagnostics- in particular for cook and leverage plot
diags <- glm.diag(m1.glm.step)
cook <- diags$cook
levg <- diags$h
stdr.levg <- levg/(1 - levg)

Next we set cook and leverage thresholds:

n <- nrow(na.omit(bird.model.mat))
p <- m1.glm.step$df.null - m1.glm.step$df.residual + 1
cook.thrsh <- 8/(n - 2 * p)
levg.thrsh <- 2 * p/(n - 2 * p)
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Next we obtain linear predictors βTxi and Pearson residuals ri for all observations i:

xx.fit <- predict(m1.glm.step, type = "response")
yy.fit <- residuals(m1.glm.step, type = "pearson")

We now create a smoother for the relationship Pearson residuals vs. linear predictor. This will serve as an
estimation of the expected Pearson residual conditional on different values of the linear predictor. If the
model has no bias it should be reasonably constant. This will be red line of Tukey Anscombe plot and should
be reasonably flat.

Now we create smoother of linear predictor vs. Pearson residuals:

ls.fit <- loess.smooth(xx.fit, yy.fit, family = "gaussian")

Random fluctuations of the data can cause the smoother to not be totally flat. To obtain an indication of
what constitutes reasonably flat smoothers we destroy any structure the Pearson residuals have with respect
to the linear predictor by randomly ordering them. We do this 100 times to create 100 orderings of the
Pearson residuals and for each ordering create a smoother with respect to the ordered linear predictor. If our
ordered Pearson residuals indeed have no structure then the smoother created above (plotted in red in the
Tukey-Anscombe plot) should be similar to the 100 ceated below (plotted in grey n the Tukey Anscombe
plot).

Finally we create Tukey-Anscombe and standardized levarage vs. Cookś distance plots:

# Tukey-Anscombe plot with pearson residuals
par(mfrow = c(1, 2))
# plot linear predictor vs. pearson residuals
plot(xx.fit, yy.fit, xlab = "linear predictor", ylab = "Pearson residuals")
for (i in 1:100) {

# Obtain sample of Pearson residuals to destroy any structure
# they may have.
yy.smpl <- sample(yy.fit, replace = TRUE)
# Create a smoother of unstructured Pearson residuals
# vs.linear predictor. These will be flat up to random
# variation and so represents acceptable deviations from
# flatness
ls.smpl <- loess.smooth(xx.fit, yy.smpl)
# Add smoother to plot in grey
lines(ls.smpl, col = "grey")

}
# Add smoother for real Pearson residuals (possibly having
# structure) vs. linear predictor
lines(ls.fit$x, ls.fit$y, col = "red")
abline(h = 0, lty = 3)

# Cook distance and leverage plot
plot(stdr.levg, cook, xlab = "Standardized leverage", ylab = "Cook statistic")
abline(h = cook.thrsh, v = levg.thrsh, lty = 2)
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Figure 30: Generalized linear model diagnostics: Tukey-Anscombe plot (left) for identifying model bias and
Cook distance vs. leverage plot (right) for identifying outliers.

We can see that the behavior of the residuals is mostly within the range of acceptable deviation from the flat
mean line. There is one observation that is influential (i.e. has high Cook’s distance) and has unusual values
for the predictors (i.e. has high leverage).

We first identify outliers:

# identify influential outliers
(indx.out <- which(stdr.levg > levg.thrsh & cook > cook.thrsh))

## 191
## 190

outs <- na.omit(bird.model.mat)[indx.out, ]

Now we plot elevation raster and overlay bird richness observation and outlier locations:

# locate outliers on map
par(mar = c(0, 0, 0, 0))
plot(dem, col = terrain.colors(100), legend = F, axes = F, box = F)
points(bird$X, bird$Y, cex = bird$richness/50, pch = 21, bg = "yellow")
points(outs$X, outs$Y, cex = 3, col = "blue")
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Figure 31: Observation and outlier locations plotted over map of elevation (raster). Aid in identifying if
outlier locations have special characteristics not taken into account by the model.

The outlier is located in the canton of Ticino. To investigate more we could make raster plots of all the
selected and non-selected predictors available to try and understand why this is a special location.

3.1.5 Model evaluation

To evaluate the accuracy of our model we will use the square root of the mean square error:

MSE =

√∑N
i=1(yi − µ̂i)2

N
(21)

where:

• N is the number of observations,
• yi is the bird richness of observation i, and,
• µ̂i is the predicted bird richness of observation i by our model.

We will also evaluate the model using the Spearman correlation between the predicted bird richness and the
real bird richness.

Measures of accuracy can be calculated in-sample or out-of-sample:

-in-sample: Model is estimated and evaluated using the same set of observations. -out-of-sample: Model
is estimated and evaluated using different, mutually exclusive, sets of observations.

We first calculate the *in-sample* mean square error for the trivial and environmental models. We also
calculate the *in-sample* Spearman correlation between fitted bird richness an real bird richness:
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mse.in0 <- sum((m0.glm$fitted - na.omit(bird.model.mat)$richness)^2)/length(m0.glm$fitted)
mse.in <- sum((m1.glm.step$fitted - na.omit(bird.model.mat)$richness)^2)/length(m1.glm.step$fitted)
spCor.in <- cor(m1.glm.step$fitted, na.omit(bird.model.mat)$richness,

method = "spearman")

In-sample measures of accuracy give us an over-optimistic estimate of error since they are calculated for the
same data that was used to fit the model. We will obtain a more accurate estimate of the error by applying
the modeling procedure to a sample of the data and evaluating the accuracy of the model on the remaining
hold-out sample. We will use a random sample of 70% of the data to fit the model and the remaining 30%
to evaluate its accuracy. We repeat this for 100 different random data splits to obtain a distribution of the
square root of the mean square error.

Now we perform out-of-sample evaluation of model accuracy:

reps <- 100 #number of repetitions
ratio <- 0.7 #fraction of data to be used for model fitting
CorEval <- c() #holder spearman correlation between predicted and real bird richness
mse.out <- c() #holder for out of sample repetitions of MSE of environmental model
mse.out0 <- c() #holder for out of sample repetitions of MSE of trivial model
for (i in 1:reps) {

# create row index variable
Sequence <- seq(from = 1, to = dim(bird.model.mat)[1])
# Sample ratio*100 % of row indices and order
SampCali <- sort(sample(Sequence, size = round(ratio * dim(bird.model.mat)[1]),

replace = FALSE, prob = NULL))
# Create matrix with response and predictors for model
# fitting
Birds_CALI <- bird.model.mat[c(SampCali), ]
# Create matrix with response and predictors for model
# evaluation
Birds_EVAL <- bird.model.mat[-c(SampCali), ]
# Fit environmental model with sample of 70% of data with all
# predictors
m1.glm_eval <- glm(form, data = na.omit(Birds_CALI), family = poisson,

maxit = 100)
# Perform stepwise selection on environmental model fitted
# with 70% of data
m1.glm.step_eval <- step(m1.glm, trace = F, direction = "both")
# Fit trivial model with sample of 70% of data
m0.glm_eval <- glm(richness ~ 1, data = na.omit(Birds_CALI),

family = poisson("log"))
# Predict bird richness for 30% of data NOT used to fit model
# using environmental model
pred.eval <- predict(m1.glm.step_eval, newdata = Birds_EVAL,

type = "response")
# Predict bird richness for 30% of data NOT used to fit model
# using trivial model
pred.eval0 <- predict(m0.glm_eval, newdata = Birds_EVAL,

type = "response")
# Calculate Spearman correlation between prediction of
# environmental model and true bird richness
cor.eval.glm <- cor(pred.eval, Birds_EVAL$richness, method = "spearman")
# Store latest repetition of correlation
CorEval <- c(CorEval, cor.eval.glm)
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# Calculate MSE of environmental model on hold-out sample
mse.aux <- sum((pred.eval - Birds_EVAL$richness)^2)/length(pred.eval)
# Calculate MSE of trivial model on hold-out sample
mse.aux0 <- sum((pred.eval0 - Birds_EVAL$richness)^2)/length(pred.eval0)
# Store leates repetition of MSE for environmental and
# trivial models
mse.out <- c(mse.out, mse.aux)
mse.out0 <- c(mse.out0, mse.aux0)

}

Next we print in-sample correlation and a summary of 100 out-of-sample correlations:

spCor.in

## [1] 0.7508188

summary(CorEval) # ~ 0.74 (mean spearman correlation)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.5996 0.6978 0.7436 0.7415 0.7801 0.8728

The out-of-sample Spearman correlation between predicted and real bird richness is reasonalby high and very
similar to the in-sample version indicating good performance of the model and good control of overfitting.

Finally we print in-sample square root of MSE and a summary of 100 out-of-sample square root of MSEs for
trivial and environmental models:

mse.in0^0.5

## [1] 10.98184

mse.in^0.5

## [1] 5.711558

pander(summary(mse.out0^0.5), caption = "Summary of out-of-sample square root of mean square error")

Min. 1st Qu. Median Mean 3rd Qu. Max.

9.321 10.44 10.98 11.01 11.62 12.58

Table 11: Summary of out-of-sample square root of mean square
error

quantile(mse.out0^0.5, c(0.05, 0.5, 0.95))

## 5% 50% 95%
## 9.759516 10.981693 12.312348
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pander(summary(mse.out^0.5), caption = "Summary of out-of-sample square root of mean square error")

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.555 5.373 5.653 5.67 5.991 6.674

Table 12: Summary of out-of-sample square root of mean square
error

quantile(mse.out^0.5, c(0.05, 0.5, 0.95))

## 5% 50% 95%
## 4.959031 5.653278 6.403525

According to out-of-sample estiamation the square root of the mean square error is between 4.96 and 6.4 with
90% confidence. In this case the out-of-sample estimation is similar to the usually over-optimistic in-sample
estimate. This is probably because our stepwise selection process prevented our model from overfitting the
data. We can also see that the environmental represents a considerable improvement on the trivial model.

Question 3.1.1 Is your model able to predict the bird species richness in Switzerland? What could we do to
improve it?

3.1.6 Projection of model to Switzerland

We will project our model for the entire Switzerland raster grid to visualize the bird species richness score we
have constructed.

First we create a matrix with predictors at all locations of the Switzerland raster grid:

bird.extent.mat <- cbind(as.data.frame(coordinates(dem)), elev = values(dem),
est.slope = extract(slope, coordinates(dem)), est.temp = extract(temperature.r,

coordinates(dem)), est.rad = extract(radiation, coordinates(dem)),
mind = extract(MIND, coordinates(dem)), div.num.diff = extract(div.num.diff,

coordinates(dem)), div.simpson = extract(div.simpson,
coordinates(dem)), div.gini = extract(div.gini, coordinates(dem)),

div.shannon = extract(div.shannon, coordinates(dem)), edge.sum = extract(edge.sum,
coordinates(dem)), forest.sum = extract(sum.forest09,
coordinates(dem)), water.dist = extract(water.dist, coordinates(dem)))

We will now project model over all Switzerland by evaluating linear predictor with observations of the matrix
we have just created. We then create raster of predicted bird species richness using model prediction for each
cell and its coordinates.

The function rasterFromXYZ can be used to create a raster from a matrix containing the x and y coordinates
in the first two columns, and the corresponding raster value in the third. The x and y coordinates must
be on a regular raster grid in order to obtain a raster with the desired resolution. This is because if the
resolution is not specified explicitly, it is assumed to be the minimum distance between x and y coordinates.
A resolution of up to 10 times smaller than the mininimum may be attempted if a regular grid can otherwise
not be created.

We now use fitted model to predict bird species richness for Switzerland raster grid and create bird richness
raster:
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proj.glm <- round(predict(m1.glm.step, newdata = bird.extent.mat,
type = "response"))

BirdRich <- rasterFromXYZ(cbind(bird.extent.mat[, c("x", "y")],
proj.glm))

Finally we plot projected bird species richness raster:

par(mar = c(0, 0, 0, 0))
plot(BirdRich, box = F, axes = F, col = brewer.pal(9, "PuRd"))
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Figure 32: Map of projected bird richness (raster) over Switzerland. Displays the bird species richness as
predicted by the fitted GLM model.

3.2 Reserve selection

We will now identify potential bird reserve locations. The new reserve location should satisfy:

1. be a minimum of 1km from any building,
2. not overlap with existing reserves (parks.r),
3. lakes should be excluded, (lakes.r),
4. have high bird diversity
5. have a total area of at least 40 km2,

3.2.1 Buildings

We will now load a shapefile of builidngs. The buildings shapefile was obtained from the Swiss Federal Office
of Topography (swisstopo). We will compute a raster of number of buildings per cell. This is done as an
exercise to further illustrate the use of the function rasterize. We also build a buildings buffer raster which
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indicates if any given cell has buildings in it or at a distance of 1000m or less. The purpose of creating this
raster is to identify the most pristine locations accross Switzerland. We will use the buildings buffer raster to
identify locations which satisfy condition 1 above.

First we load buildings shape file:

Buildings <- readOGR(dsn = "../data/VEC200_Building", layer = "VEC200_Building",
p4s = prj)

## OGR data source with driver: ESRI Shapefile
## Source: "../data/VEC200_Building", layer: "VEC200_Building"
## with 313670 features
## It has 6 fields

class(Buildings)

## [1] "SpatialPolygonsDataFrame"
## attr(,"package")
## [1] "sp"

We will now convert buildings shapefile into a raster file where the cell value corresponds to the number of
buildings inside each cell.

As we will see, buildings are often much smaller than the cell size meaning that the whole building may
be inside a cell but, if we treat it like a polygon when we rasterize, it may not count as falling within the
cell since it does not cover the cell center (see subsection 2.4.1). For this reason, we will convert polygon
buildings to line buildings before rasterizing so that a building is considered to fall within a cell if any part of
the line that conforms it falls inside the cell.

Now for the small extent created before (in subsection 2.3.1) we obtain the x and y coordinates of the grid
lines.

cells_centers <- coordinates(crop(dem, extSmall))
lines_x <- unique(c(cells_centers[, 1] - 500, cells_centers[,

1] + 500))
lines_y <- unique(c(cells_centers[, 2] - 500, cells_centers[,

2] + 500))

Now we isolate the building shapes that fall into this extent.

fewBuildings <- crop(Buildings, extSmall)

Next we convert to raster. We also assign to each cell of the grid the number of building shapes that fall
inside:

fewBuildings.r <- rasterize(x = as(fewBuildings, "SpatialLines"),
y = crop(dem, extSmall), field = rep(1, length(fewBuildings)),
fun = function(x, ...) sum(x, ...), na.rm = T)

Now we ssign zero values to NA valued cells since these correspond to cells with no building shapes. Cells
outside Switzerland should still be NA-valued (we use mask function as usual):
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fewBuildings.r[is.na(fewBuildings.r)] <- 0
fewBuildings.r <- mask(fewBuildings.r, crop(dem, extSmall))
# summary(values(fewBuildings.r))

Finally we plot grid, raster values, and building shapes.

plot(crop(dem, extSmall), col = "white", legend = F)
plot(fewBuildings, add = T)
abline(v = lines_x, h = lines_y, col = "red")
text(cells_centers, labels = values(fewBuildings.r), cex = 0.7,

col = "blue")
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Figure 33: Map of buildings (shapefile) with sum of buildings raster values and grid displayed. Zoom in for
5000m x 5000m extent at center of entire raster.

As we can see we obtain the desired result. Each raster cell-value counts the number of builidings that touch
the corresponding cell. Note that if we had used buildings as polygons shape we would obtain a different
result.

Now apply above procedure to the whole Buildings SpatialPolygonsDataFrame. Since it has 313,670 polygons,
this takes quite a while which is why we save result so that we may simply upload result in future.

BuildingsLines <- as(Buildings, "SpatialLines")
sum.buildings <- rasterize(x = BuildingsLines, y = dem, field = rep(1,

length(Buildings)), fun = function(x, ...) sum(x, ...), na.rm = T)
projection(sum.buildings) <- prj
sum.buildings[is.na(sum.buildings)] <- 0
sum.buildings <- mask(sum.buildings, dem)
writeRaster(sum.buildings, filename = "../data/sumBuildings/sumBuildings",

format = "raster")

Now we plot the resulting sum of buildings raster.
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# summary(values(sum.buildings))
par(mar = c(0, 0, 0, 0))
plot(sum.buildings, legend = T, box = F, axes = F, col = brewer.pal(20,

"Blues"))
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Figure 34: Map of the number of buildings (raster) in Switzerland. Count of the number buildings that fall
into each 1000m x 1000m cell.

To get a close up of the location with most buildings we will again create small extent (as in subsection 2.3.1)
except this time we will do it with respect to the center of the cell with most buildings. We use the function
xyFromCell from the R package raster which provides the x and y coordinates of the cell numbers passed
to the argument cell, from the raster object passed as first argument.

We will now zoom in to cells surrounding the cell with most buildings.

First we obtain the centre of cell with most buildings:

center <- xyFromCell(sum.buildings, cell = which(values(sum.buildings) ==
max(values(sum.buildings), na.rm = T)))

Now we obtain the extent of 5 x 5 cell subset with the above center:

extSmall <- extent(c(center[1] - 500 - 2 * 1000, center[1] +
500 + 2 * 1000, center[2] - 500 - 2 * 1000, center[2] + 500 +
2 * 1000))

Next we obtain coordinates of cell centers and x and y coordinates for the grid lines within small extent:

cells_centers <- coordinates(crop(dem, extSmall))
lines_x <- unique(c(cells_centers[, 1] - 500, cells_centers[,
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1] + 500))
lines_y <- unique(c(cells_centers[, 2] - 500, cells_centers[,

2] + 500))

Now we obtain a subset of buildings shapefile and raster limited to the small extent:

fewBuildings <- crop(Buildings, extSmall)
fewBuildings.r <- crop(sum.buildings, extSmall)

Finally we plot elevation map of Switzerland with cantonal borders and arrow pointing to small extent shown
as a blue square. We also plot buildings shapes of small extent with raster grid and values overlayed:

aux.arrow <- 1e+05 #to help with plotting arrow showing the small extent in full map
par(mar = c(0.2, 0.2, 0.2, 0.2), mfrow = c(1, 2))
plot(dem, legend = F, axes = F)
plot(ch.sp, add = T)
plot(extSmall, col = "blue", add = T)
arrows(x0 = center[1] + aux.arrow, y0 = center[2] + aux.arrow,

x1 = center[1], y1 = center[2], col = "blue")
plot(crop(dem, extSmall), col = "white", legend = F, axes = F)
plot(fewBuildings, add = T, col = "grey")
abline(v = lines_x, h = lines_y, col = "red")
text(cells_centers, labels = values(fewBuildings.r), cex = 1,

col = "blue")
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Figure 35: On the left a map of elevationwith cantonal borders and arrow pointing to small extent shown
as a blue square. On the right a map of buildings (shapefile) with sum of buildings raster values and grid
displayed: zoom in for 5000m x 5000m extent centered around cell with most buildings in Switzerland raster
grid.

Again we can see that the rasterization does what we hoped it would do.

3.2.2 Buildings buffer

For the buildings buffer we work with buffer and rasters instead ofgBuffer and SpatialPolygons because
there are 313,670 building polygons so processing time is too long. The buffer function calculates a buffer of
given width around all cells from raster given as first argument that are not NA.

The sum of buildings raster currently has zeros where there are no buildings. We need to replace those zeros
with NA since buffer calculates buffer around cells that are not NA.

First we replace all NAs with zeros::

sum.buildings2 <- sum.buildings
sum.buildings2[which(values(sum.buildings2) == 0)] <- NA

Now we create a 1km buffer for buildings:

buildings.buffer <- buffer(sum.buildings2, width = 1000)
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We then need to re-assign zero values to all cells that have NA values for plotting purposes. However cells
that are outside of Switzerland should still have NA values.

Next we assign zero values to all NA valued cells and then re-assign NA values to those cells that fall outside
of Switzerland using mask function and the elevation raster as a template:

buildings.buffer[which(is.na(values(buildings.buffer)))] <- 0
buildings.buffer <- mask(buildings.buffer, dem)
# summary(values(buildings.buffer))

Finally we plot buildings buffer and buildings rasters:

par(mar = c(0, 0, 0, 0))
plot(buildings.buffer, legend = F, axes = F, box = F)
plot(sum.buildings2, add = T, col = "yellow", legend = F)
legend(7e+05, 85000, legend = c("buildings", "buildings buffer"),

fill = c("yellow", "green"))

buildings
buildings buffer

Figure 36: Map of Switzerland with locations where buildings are in yellow and locations where there are no
builidings but that are within 1000m of buildings in green.

3.2.3 Parks

We want to create a new reserve at a location where there is currently none so we need to load a map
indicating current park locations.

We will load shape files of national (nat_park) and regional (Parke) parks in Switzerland, convert them into
rasters and combine them into a general parks raster indicating the location of parks in Switzerland. The
national and regional park shapefiles were obtained from the Swiss Federal Office of Topography (swisstopo).
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First we oad both park shape files and convert to raster using rasterize function:

# read regional parks shape file
Parke <- readOGR(dsn = "../data/Parke", layer = "Parke", p4s = prj)

## OGR data source with driver: ESRI Shapefile
## Source: "../data/Parke", layer: "Parke"
## with 19 features
## It has 9 fields

Parke.r <- rasterize(x = Parke, y = dem, field = rep(1, length(Parke)))
# read national parks shape file
nat_park <- readOGR(dsn = "../data/nat_park", layer = "nat_park",

p4s = prj)

## OGR data source with driver: ESRI Shapefile
## Source: "../data/nat_park", layer: "nat_park"
## with 2 features
## It has 9 fields

nat_park.r <- rasterize(x = nat_park, y = dem, field = rep(1,
length(nat_park)))

Now we merge both national and regional park rasters into a parks raster:

parks.r <- Parke.r | nat_park.r

Finally we plot elevation rasters with parks overlayed:

par(mar = c(0, 0, 0, 0))
plot(dem, axes = F, box = F)
plot(parks.r, col = "green", add = T, legend = F)
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Figure 37: Map of elevation (raster) in Switzerland with national parks (raster) overlayed in green.

3.2.4 Potential reserve sites

We will now identify potential reserve locations.

First we create a raster identifying locations with a *high* bird species richness: 15 or more bird species:

# summary(values(BirdRich)) hist(values(BirdRich))
bird_high <- BirdRich > 15

All but one of the reserve criteria can be evaluated on a cell by cell basis: mininum distance to building, no
lakes or parks and high bird diversity. We will identify cells that meet these criteria by using logical operators
on the parks, lakes, buildings buffer and bird richness projection rasters. For criterion based on size of the
park we will have to check the number of cells to which a given cell, meeting previous criteria, is connected to.

Next we prepare lakes and parks raster making sure locations with lakes (parks) have a value of 1/TRUE,
locations without lakes (parks) have a value of 0/FALSE and locations outside of Switzerland have a value of
NA:

Lakes.r[which(is.na(values(Lakes.r)))] <- 0
Lakes.r <- mask(Lakes.r, dem)
parks.r[which(is.na(values(parks.r)))] <- FALSE
parks.r <- mask(parks.r, dem)
# summary(values(buildings.buffer)) summary(values(Lakes.r))
# summary(values(parks.r)) summary(values(bird_high))

Now we create a raster indicating potential reserve cells: those with high richness not falling in lakes, existing
parks and or near buildings (within buildings buffer):
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Potential <- !buildings.buffer & !Lakes.r & !parks.r & bird_high
# summary(values(Potential))

Finally we plot potential raster showing cells which meet criteria 1-4:

par(mar = c(0, 0, 0, 0))
plot(Potential, axes = F, box = F, col = c("grey", "green"))
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Figure 38: Map indicating potential reserve sites (raster). Cells in green satisfy all requirements for new
reserve location (except reserve area requirement for which number of contiguous cells meeting requirements
has to be evaluated).

Are any of these spots at least 40km2? The function clump from the R package raster detects patches of
connected cells in the raster given as argument, giving each cell in the patch the same id, which is now the
value of the resulting raster. Two cells are connected if you can get from one to the other with a series of
one-cell movements to neighboring cells (8 surrounding cells) without ever arriving at an NA valued cell. We
can then make a table of id frequencies and replace the id value of the raster with its frequency. We do this
with the freq function from the R package raster which constructs a frequency table of the values of the
raster passed as argument.

We will use the function gCentroid from the R package rgeos to obtain the centroid of each canton. This
function takes as argument a shape object and calculates its centroid. We can then place the label of the
canton name at the centroid of each canton in order to help us see where our potential reserve may be located.

First we identify patches of connected cells using clump function:

Potential.patches <- clump(Potential)

## Loading required namespace: igraph
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We will now modify raster, using freq function, so that the value of each cell is the size of the patch it
belongs to.

Now we obtain a table of the frequency with which each patch-ID, identifying a different patch of connected
cells, appears. Exclude NA frequency from table:

tab <- freq(Potential.patches)
tab <- tab[1:(nrow(tab) - 1), ]

Next we assign raster cell value by matching the patch-ID value of the cell with the frequency of the ID :

Potential.patches[1:length(values(Potential.patches))] <- tab[match(values(Potential.patches),
tab[, 1]), 2]

Now we prepare potential patches raster for plotting by first assigning NA valued-cells the value 0 and then
cells outside of Switzerland the value NA:

Potential.patches[which(is.na(values(Potential.patches)))] <- 0
Potential.patches <- mask(Potential.patches, dem)

Finally we plot potential patches raster showing size of each patch and print a summary of the size of patches:

par(mar = c(0, 0, 0, 0))
plot(Potential.patches, axes = F, box = F)
plot(ch.sp, add = T)
text(coordinates(gCentroid(ch.sp, byid = T)), ch.sp$NAME_1, cex = 0.5)
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Figure 39: Map indicating potential reserve sites (raster). Colored cells satisfy all requirements for new
reserve location (except reserve area requirement). Color of cells indicates the number of cells that are
connected to it. Includes cantonal borders.
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pander(summary(values(Potential.patches)), caption = "Summary of areas of potential sites")

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0 0 0 0.221 0 32 40886

Table 13: Summary of areas of potential sites

We see that of the sites that satisfy all the conditions the one with the largest area, located in the canton of
Bern, has only 32 km2. Our strategy will now be to remove the buildings buffer condition and only require
that there not be any buildings on the potential reserve site. This will allow us to require a higher bird
species richness value for the reserve site.
Now we redefine a potential reserve cell as a cell without buildings, lakes and parks, and with more than 35
bird species richness:

Potential2 <- !(sum.buildings > 0) & !Lakes.r & !parks.r & (BirdRich >
35)

# summary(values(Potential2))
par(mar = c(0, 0, 0, 0))
plot(Potential2, axes = F, box = F, col = c("grey", "green"))
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Figure 40: Map indicating potential reserve sites (raster). Cells in green satisfy all modified criteria for new
reserve location (except reserve area requirement for which number of contiguous cells meeting requirements
has to be evaluated).

Are any of these spots at least 40km2?
We identify patches of connected cells using clump function and construct raster where the value of each cell
is the size of the patch it belongs to:
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Potential.patches2 <- clump(Potential2)
tab <- freq(Potential.patches2)
tab <- tab[1:(nrow(tab) - 1), ]
Potential.patches2[1:length(values(Potential.patches2))] <- tab[match(values(Potential.patches2),

tab[, 1]), 2]

Now we prepare new potential reserve site raster for plotting as before and plot:

Potential.patches2[which(is.na(values(Potential.patches2)))] <- 0
Potential.patches2 <- mask(Potential.patches2, dem)

par(mar = c(0, 0, 0, 0))
plot(Potential.patches2, axes = F, box = F)
plot(ch.sp, add = T)
text(coordinates(gCentroid(ch.sp, byid = T)), ch.sp$NAME_1, cex = 0.5)
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Figure 41: Map indicating potential reserve sites (raster). Colored cells satisfy all modified criteria for new
reserve location (except reserve area requirement). Color of cells indicates the number of cells that are
connected to it. Includes cantonal borders.

Finally we print a summary of the size of patches:

pander(summary(values(Potential.patches2)), caption = "Summary of areas of potential sites (relaxed criteria)")

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

0 0 0 0.5667 0 74 40886

Table 14: Summary of areas of potential sites (relaxed criteria)
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We see that, with these altered conditions, there is a potential site of 74km 2 on the border of the cantons of
Bern and Lucerne.

3.2.5 Selection

We now obtain a shape object (polygon) representing the boundaries of our suggested new reserve park based
on the patch of connected cells, identified above, which meet all the criteria. We will zoom in to the patch
with most connected cells that meet all the criteria by obtaining the extent of these cells. Then we will plot
the extent and use drawPoly function to draw a polygon that includes all these cells.

First we obtain coordinates of cells that belong to the potential site with maximum number of connected
cells using xyFromCell function:

# plot only biggest patch, get coordinates of biggest patch
xyMaxPatch <- xyFromCell(Potential.patches2, which(values(Potential.patches2) ==

max(values(Potential.patches2), na.rm = T)))

Next we create an extent from these coordinates using extent function:

extentMaxPatch <- extent(xyMaxPatch)

Now we plot a zoom-in of potential sites raster where limits of plot defined by the extent of the potential site
with maximum number of connected cells:

plot(crop(Potential.patches2, extentMaxPatch))
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Figure 42: Largest potential site

Now we draw a polygon around the potential site with following commands:
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myReserve <- drawPoly()
myReserve.r <- rasterize(myReserve, dem, field = 1)
writeRaster(myReserve.r, filename = "../data/myReserve/myReserve",

format = "raster")

Finally we plot raster of selected reserve site together with existing parks raster:

par(mar = c(0, 0, 0, 0))
plot(myReserve, col = "green4", legend = F, box = F, axes = F)
plot(ch.sp, add = T)
plot(parks.r, add = T, col = c(NA, "green"), legend = F)
plot(water.r, add = T, col = "light blue", legend = F)
legend(730000, 90000, fill = c("green", "green4"), legend = c("existing park",

"new reserve"))

existing park
new reserve

Figure 43: Map of water (raster), existing national parks (raster), cantonal borders (shapefile) and new
reserve location (raster).

Finally:

• Compare your potential park to the existing parks in Switzerland (use topographic map and parks
rasters). Suggest minimum two places where it would be interesting to build a reserve for birds. Take
into account that this new park should cover a region of Swtzerland where no such park exists. Identify
the region where the park would be situated and some features of the regions. Would this region be
suitable for a nature regional park?

• Think of other organisms (plants, mammals, reptiles, etc.) and try to find sites that could also be
interesting for them (go to https://map.geo.admin.ch/ for some help).
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• Draw the final shapefile of the park based on the features from the topographic map, for instance
accounting for position of large roads or other boundaries, or natural barriers such as mountain ranges.

• Create a map of Switzerland with the location of existing parks in one color and the new potential park
in another.

• Think about the limitation of using species richness to design such a park and propose another approach
to improve the procedure.

4 Installing rgeos and rgdal packages on MacOSX

Instructions for installing rgeos and rgdal packages on MacOSX:

• install xquartz, see http://www.xquartz.org/

• install GEOS and GDAL frameworks, see http://www.kyngchaos.com/files/software/frameworks/
GDAL_Complete-1.11.dmg

• optionally XCode and Apple Command Line Developer Tools, see http://osxdaily.com/2014/02/12/
install-command-line-tools-mac-os-x/

• optionally Fortran compiler, see http://stat.ethz.ch/CRAN/doc/manuals/r-release/R-admin.html#
OS-X
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