
Land cover models
Bleaching in the Maldives
Prof. Dr. Loic Pellissier

20 November, 2017

Contents
1 Introduction 1

2 Landsat data 2
2.1 Description . 7

2.1.1 Study area . 7
2.1.2 Downloading Landsat data . 10

2.1.2.1 Top of atmosphere reflectance . 10
2.1.2.2 Surface reflectance . 15
2.1.2.3 Cloud detection using Fmask . 18

2.1.3 Levels of reflectance data . 20
2.1.4 Spectral bands . 20
2.1.5 Quality flags . 26
2.1.6 Study period . 44

3 Change point analysis 46
3.1 Pixelwise fourier model . 52
3.2 Forward selection . 57
3.3 Seemingly Unrelated Regression . 62

3.3.1 Theory . 62
3.3.2 Application to change point analysis . 64
3.3.3 Results . 65

3.3.3.1 Plausible bleaching dates . 66
3.3.3.2 Map of bleaching . 67

4 Post-processing 68
4.1 Interpolation . 68

4.1.1 Model . 69
4.1.1.1 Variogram . 71
4.1.1.2 Prediction . 75

4.2 Smoothing . 76

5 Extensions 80

References 81

6 Appendix 81

1 Introduction

The goal of this practical is to explore the use of satellite reflectance data in order to model land use.
Specifically we will try and detect coral bleaching zones in the Maldives due to the bleaching event of 2016.

1

The basic idea is that a bleeching event at a certain site will increase the surface reflectance at this site.
Apart from the health of the coral, there are many other factors that effect estimated surface reflectance at
coral sites such as coral heterogeneity, water depth, tide, seaweed, river discharge and atmospheric conditions
(Yamano and Tamura (2004)). Because we do not have information for these factors our approach will be to
assume they are relatively stable by site. The methodology we will use will focus on detecting change to
the normal cyclical regime of surface reflectance at a given site. We will then observe if there are any global
spatial patterns to these changes that indicate the possibility of a global intervention such as a bleaching
event.

We will use the programming language in R and reflectance data from the Landsat satellite. The following
steps will be followed:

1. Download Top-of-Atmoshpere (TOA) reflectance and surface reflectance data for the chosen study area
and study period.

2. Detect cloudy pixels by processing TOA reflectance data with FMASK algorithm in Matlab.

3. Load data into R and build a historical pixelwise database of reflectance that we can easily exploit.

4. Model the surface reflectance of each pixel as a function of the time of year and the tidal cycles. Use
forward selection to choose the relevant seasonal and tidal factors.

5. Using surface reflectance model apply change point analysis independently to each pixel to determine
the most likely date of a change occurring at the site of each pixel.

6. Determine the most likely date of bleaching event affecting the entire study area.

7. Produce a map of likely bleached areas within study area.

2 Landsat data

The Landsat program is a long-running satellite imagery acquisition project. The first satellite Landsat 1 of
the programme was launched on July 23, 1972. The most recent, Landsat 8, was launched on February 11,
2013. Landsat 1 provided information for four spectral band with spatial resolutions of 80 metres . Landsat 8
data has eleven spectral bands with spatial resolutions ranging from 15 to 100 meters; the temporal resolution
is 16 days. Landsat images are usually divided into scenes for easy downloading. Each Landsat scene is about
185 kilometers long and 185 kilometers wide although since scenes may be displayed obliqueley the image is
padded with black pixels such that it a larger area.

Figure 1: Landsat program timeline

The landsat 8 satellite has a sun-synchronous near-circular, near-polar, orbit with a 705 km altitude at the
equator. Sun-synchronicity means it orbits the earth in such a way that it always passes over a given point of
the planet???s surface at the same local solar time. Although, to be clear, it does not pass over all points at
the same local solar time. This is useful since it allows for relatively constant illumination of a given point
accross different time observations.

2

The landsat completely orbits the Earth every 98.9 minutes, completes over 14 orbits per day, and provides
complete coverage of the Earth every 16 days. It has an equatorial crossing at 10:11 a.m. (+/???15 min)
mean local time during the descending node (daytime). In this orbit, the Landsat 8 observatory follows a
sequence of fixed ground tracks (also known as paths) defined by the second Worldwide Reference System
(WRS-2). WRS-2 is a path/row coordinate system used to catalog all the science image data acquired from
the Landsat 4 - 8 satellites. The following animation shows how the landsat 8 covers every part of the globe
twice (once in daytime during the descending node and once in nighttime during the ascending node) by
capturing 124 scenes daily and nightly along 14-15 paths.
We first set the R working directory
setwd("/Volumes/Local/emilianodiazsalasp/Documents/ETH Zurich/USYS/scripts/bleachingMaldives/R")

When loading data we use routes with respect to the R working directory and with respect to the following
folder structure.

Figure 2: Required folder structure

library(rgdal)
reference system used by landsat
projLandsat <- "+proj=utm +zone=43 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"
library(raster)
Load World Reference System (2) shape file where landsat
scenes are shown, identified by their path and row
wrs2 <- readOGR(dsn = "../data/wrs2_asc_desc", layer = "wrs2_asc_desc")

OGR data source with driver: ESRI Shapefile

3

Source: "../data/wrs2_asc_desc", layer: "wrs2_asc_desc"
with 57784 features
It has 13 fields
Integer64 fields read as strings: PR_ PR_ID WRSPR

wrs2 <- wrs2[order(wrs2$DAYCLASS, wrs2$PATH, wrs2$ROW),]
projection(wrs2)

[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

table(table(wrs2$PATH)) #248 scenes per path

##
248
233

table(table(wrs2$PATH, wrs2$MODE)) #124 daytime and nightime scenes per path

##
124
466

apply(as.array(table(wrs2$PATH, wrs2$DAYCLASS, wrs2$MODE)), c(2,
3), function(col) sum(col > 0)) #14-15 paths per day

##
A D
1 14 14
2 15 15
3 14 14
4 15 15
5 15 15
6 14 14
7 15 15
8 14 14
9 15 15
10 14 14
11 15 15
12 14 14
13 15 15
14 15 15
15 14 14
16 15 15

124 * 16 * 14.5 * 2 #approx.: 124 daytime scenes/path 14.5 paths/day * 16 days/cycle

[1] 57536

* 2 daytime & nightime scenes / daytime scenes = 57,536
daytime & nightime scenes/cycle
nrow(wrs2) #57,784

[1] 57784

4

Figure 3: Animation of coverage of globe by landsat 8

We now show which landsat scenes provide daytime coverage of Switzerland.
ch <- getData("GADM", country = "CHE", level = 0)
library(rgeos)
indx <- which(gIntersects(wrs2, ch, byid = T)[1,])
wrs2.ch <- wrs2[indx,]
wrs2.ch <- wrs2.ch[which(wrs2.ch$MODE == "D"),]
plot(wrs2.ch, border = seq(length(unique(wrs2.ch$PATH)))[match(wrs2.ch$PATH,

unique(wrs2.ch$PATH))])
plot(ch, bg = "light grey", add = T)
text(gCentroid(wrs2.ch, byid = T), labels = paste(wrs2.ch$PATH,

wrs2.ch$ROW, sep = "-"), col = "purple", cex = 1)

196−27

196−28

194−27

194−28

195−27

195−28

193−27

193−28

Figure 4: Map of Switzerland with Landsat scenes.

5

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

There are two sensors aboard landsat 8, the Operational Land Imager (OLI) recording radiances with
frequencies between 0.43 and 1.38 micrometers in 9 bands, at resolutions of 15-30m, and the Thermal Infrared
Sensor (TIRS) recording radiances with frequencies between 10.6 and 12.51 micrometers in 2 bands, at 100m
resolution.

Both the OLI and TIRS sensors simultaneously image every scene, but are capable of independent use should
a problem in either sensor arise. In normal operation the sensors view the Earth at nadir (directly overhead,
view zenith angle=0), but special collections may be scheduled off-nadir.

Figure 5: Sun sensor geometry

The TIRS and OLI collect level 0 brightness data , store it using the WRS2 coordinate system and send it to
the EROS Center via a ground network consisting of stations around the world. It is then geometrically and
radiometrically calibrated to turn it into the Level-1 absolute radiance data that is available for download.
Geometric calibration involves linking radiance data to a geographic system in the most accurate way possible.
Radiometric calibration involves performing operations on the radiance data itslef to correct for measurement
inaccuracies. This data has been converted to absolute radiance so is unitless (16-bit Digital Numbers or
DNs).

The collection number associated to Level-1 landsat data refers to how the data was collected in order to
characterize its quality. So far there are only two collection numbers: pre-collection which is not tiered
according to quality and collection 1 which is. The collection category or tier, refers to the quality of the
parameters used to carry out geometric and radiometric correction. There are three tiers: tier 1, tier 2, real
time in order of quality.

Level-1 absolute radiance data (in DNs) can be converted to spectral radiance using scaling factors (gain
and bias associated to each scene) or to top-of-atmosphere reflectence using scaling factors (gain and bias
associated to each scene) and the solar elevation/zenith angle (associated to each pixel).

To obtain Level-2 surface reflectance data, Level-1 top-of-atmosphere reflectance must be atmospherically
corrected. Ground level surface reflectance is estimated by correcting for atmospheric scattering and absorption.
Correction involves many different variables including atmospheric intrinsic reflectance, gaseous transmission,

6

atmospheric transmission, spherical albedo, surface pressure, ozone, water vapor and aerosol optical thickness.

More information on landsat 8 data can be found at https://landsat.usgs.gov/landsat-8-l8-data-users-handbook
and https://landsat.usgs.gov/frequently-asked.

2.1 Description

2.1.1 Study area

Landsat reflectance data are downloaded by scene which in the case of the Maldives extend a 230km2 area
(including padding pixels) . Since the resolution of the images is 30m this means each scene has around
(230000/30)2 ≈ 60 million pixels. We will use 74 landsat images from the 2013-05 to 2017-05 period. For
each pixel we have one 16 bit integer reflectance value for each of nine bands (wavelength intervals) plus a 16
bit integer value for the quality band. In other words for each pixel and date we will have a vector of ten
16 bit integer values. For 74 dates and 4 bytes per integer value this means we have 74 dates ∗ 60 million
pixels/date ∗ 10 integers/pixel ∗ 4 bytes/integer ≈ 177 gigabytes. For data storage and processing restrictions
we chose a subarea of approximately 5.36 km2 such that the amount of data will be approximately 5.362/2302

∗ 177000 ≈ = 96 megabytes.

In this subsection we explore the chosen 5.36km2 area in the context of the wider maldives area and the
landsat scenes.
reference system used by landsat
projLandsat <- "+proj=utm +zone=43 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"
Load maldives shape file using readOGR function from rgdal
package
maldives.shp <- readOGR(dsn = "../data/shp_madives", layer = "Maldive_inter")

OGR data source with driver: ESRI Shapefile
Source: "../data/shp_madives", layer: "Maldive_inter"
with 5306 features
It has 25 fields

projection(maldives.shp)

[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

Keep only paths 144-146 and row 55-60 corresponding to the
maldives scenes
wrs2 <- wrs2[which(wrs2$PATH %in% seq(144, 146) & wrs2$ROW %in%

seq(55, 60)),]
wrs2 <- wrs2[which(wrs2$MODE == "D"),] #descending corresponds to daytime
dim(maldives.shp) # 5306 polygons

[1] 5306 25

The maldives shape file includes a classification of the
maldives according to the type of atoll and reef of each
polygon. Show the distribution of atoll type and reef type
for the maldives.
table(maldives.shp$RB_ATTRIB)/nrow(maldives.shp) * 100

##
barrier atoll-bank patch atoll-bank
50.88579 49.11421

table(maldives.shp$RB_DEPTH_A)/nrow(maldives.shp) * 100

7

https://landsat.usgs.gov/landsat-8-l8-data-users-handbook
https://landsat.usgs.gov/frequently-asked

##
deep_reef shallow_reef variable_depth_reef
1.356954 81.134565 17.508481

Load 2 objects of type extent which have coordinates of the
chosen study area Load first extent - first zoom
load(file = "../data/shallowReefExtent_atoll.RData")
Transform into a SpatialPolygons object in order to plot
and calculate area
(ext <- shallowReefExtent)

class : Extent
xmin : 73.30199
xmax : 73.59743
ymin : 3.780065
ymax : 4.142287

pts <- expand.grid(x = ext[1:2], y = ext[3:4])
pts <- pts[c(1, 2, 4, 3, 1),]
P1 <- Polygon(pts)
Ps1 <- list(Polygons(list(P1), ID = 1))
rect <- SpatialPolygons(Ps1, proj4string = CRS(projection(wrs2)))
sqrt(gArea(spTransform(rect, CRSobj = projLandsat)))/1000 #36.25 km^2

[1] 36.25075

Load second extent - second zoom
load(file = "../data/myExtent_atoll.RData")
(ext <- myExtent)

class : Extent
xmin : 73.43658
xmax : 73.48313
ymin : 3.879924
ymax : 3.930201

pts <- expand.grid(x = ext[1:2], y = ext[3:4])
pts <- pts[c(1, 2, 4, 3, 1),]
P1 <- Polygon(pts)
Ps1 <- list(Polygons(list(P1), ID = 1))
rect2 <- SpatialPolygons(Ps1, proj4string = CRS(projection(wrs2)))
sqrt(gArea(spTransform(rect2, CRSobj = projLandsat)))/1000 #5.36 km^2

[1] 5.361264

The next three plots show progressive levels of detail of the study area. We first show the Maldives islands
labelling the 18 landsat scenes which cover them. We also show the 36km2 area, in landsat scene with
path = 145 and row = 57, within which our study area is located.
plot(wrs2)
plot(maldives.shp, add = T, border = c("blue", "green", "red")[match(maldives.shp$RB_DEPTH_A,

c("deep_reef", "shallow_reef", "variable_depth_reef"))])
text(gCentroid(wrs2, byid = T), labels = paste(wrs2$PATH, wrs2$ROW,

sep = "-"), col = "purple", cex = 0.5)
plot(rect, add = T, border = "black")
plot(rect2, add = T, border = "black")

8

146−55

146−56

146−57

146−58

146−59

146−60

144−55

144−56

144−57

144−58

144−59

144−60

145−55

145−56

145−57

145−58

145−59

145−60

Figure 6: Map of Maldives with Landsat scenes.

The following plot shows the 36km2 area and the 5.4km2 study area within it.
plot(crop(maldives.shp, rect), border = c("blue", "green", "red")[match(maldives.shp$RB_DEPTH_A,

c("deep_reef", "shallow_reef", "variable_depth_reef"))])
plot(rect, add = T, border = "black")
plot(rect2, add = T, border = "black")

Figure 7: Map of Maldives with Landsat scenes. First close-up.

Finally the following plot shows a our 5.4km2 study-area in detail.
plot(crop(maldives.shp, rect2), border = c("blue", "green", "red")[match(maldives.shp$RB_DEPTH_A,

c("deep_reef", "shallow_reef", "variable_depth_reef"))])
plot(rect2, add = T, border = "black")

9

Figure 8: Map of Maldives with Landsat scenes. Second close-up.

2.1.2 Downloading Landsat data

We use two levels of reflectance data to detect coral bleaching: top-of-atmosphere and surface reflectance
data. In section 2.1.3 we explore the different processing levels of reflectance data. We provide all the data
necessary to carry out all analyses. However, in this section we show how to download reflectance data to aid
in other reflectance based studies or in order to update analyses with data recorded after May of 2017.

2.1.2.1 Top of atmosphere reflectance

Top-of-atmosphere reflectance data can be ordered from the earth explorer website run by the U.S. Geological
Survey (https://earthexplorer.usgs.gov/) .

To download top-of-atmosphere reflectance for many dates in a bulk fashion, we first need to download and
install the Bulk Download Application (BDA). Information on how to download, install and use the BDA
application can be found at https://www.usgs.gov/media/videos/eros-earthexplorer-how-do-a-bulk-download.

Once we have downloaded the bulk download application we can order and download top-of-atmosphere
reflectance data by carrying out the following steps:

1. Go to earth explorer website. https://earthexplorer.usgs.gov/

2. Create account and login

10

https://earthexplorer.usgs.gov/
https://www.usgs.gov/media/videos/eros-earthexplorer-how-do-a-bulk-download
https://earthexplorer.usgs.gov/

Figure 9: Create account and login

3. Enter search criteria:

a. Path/Row: Enter path= 145, row= 57 and click on show.

Figure 10: Enter location

b. Date range:Enter date ranges 2013-05-01 to 2017-05-31 and click on Data sets.

11

Figure 11: Enter dates

4. Select data sets:

a. Select Landsat

b. Select Landsat Collection 1 Level-1

c. Select Landsat 8 OLI/TIRS C1 Level-1

d. Click on Additional Criteria.

12

Figure 12: Select datasets

5. Additional Criteria: Under Day/Night Indicator select Day and click on Results.

13

Figure 13: Select additional criteria

6. Results:

a. Select Show Result Controls

b. Select Add All Results From Current Page to Bulk Download

c. Repeat for all remaining results pages.

d. Click on View Item Basket.

14

Figure 14: Pick results

7. Checkout: Click on Proceed to Checkout

8. Download order with Bulk Download Installer

a. Open Bulk Download Installer

b. Log in with user and password created in step 1b.

c. Select order

d. Click on Begin download.

.

Technically the data downloaded in this way is not top-of-atmosphere reflectance but absolute radiance.
However, absolute radiance can be converted to top-of-atmosphere using scaling factors (gain and bias
associated to each scene) and the solar elevation/zenith angle (associated to each pixel) which are available
in the ANG.txt solar illumination and sensor viewing coefficient angle file (see https://landsat.usgs.gov/
solar-illumination-and-sensor-viewing-angle-coefficient-file) and the MTL.txt meta parameter file associated
to each scene. We don’t work directly with top-of-atmosphere reflectance and use it only to detect clouds
using the fmask algorithm in matlab. However, this algorithm is coded to take in the absolute radiance, angle
and meta-parameter files and then convert absolute radiance to top-of-atmosphere reflectance internally so
we don’t carry out this conversion.

Information on converting Level-1 absolute radiance data to spectral radiance or top-of-atmosphere reflectance
can be found at https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-5.

2.1.2.2 Surface reflectance

Surface reflectance data can also be ordered from the earth explorer website run by the U.S. Geological
Survey (https://earthexplorer.usgs.gov/). To order surface reflectance data repeat steps 1-7 from section
2.1.2.1 only replacing step 4 with the following step and skipping step 5 altogether:

4. Select data sets:

a. Select Landsat

b. Select Landsat Collection 1 Level-2 (On-Demand)

c. Select Landsat 8 OLI/TIRS C1 Level-2

d. Click on Results.

15

https://landsat.usgs.gov/solar-illumination-and-sensor-viewing-angle-coefficient-file
https://landsat.usgs.gov/solar-illumination-and-sensor-viewing-angle-coefficient-file
https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-5
https://earthexplorer.usgs.gov/

Figure 15: Select datasets

Notice that it is almost the same as before except that here we are ordering Level-2 data (surface reflectance)
instead of Level-1 data (top-of-atmosphere reflectance) and we click on Results instead of Additional Criteria.
For the differences between the different levels of reflectance data see section 2.1.3.

Unfortunately, to download top-of-atmosphere reflectance for many dates in a bulk fashion we cannot use the
Bulk Download Application of section 2.1.2.1. Instead we must use the ESPA Bulk Download Client. The
ESPA Bulk Download Client is a python-based tool that retrieves all completed scenes per user and/or order
and places them into a target directory.

To use this client python must be installed on your computer. Once python is installed you can download
and use the ESPA Bulk Download Client by carrying out the following steps:

1. Open Computer Command Prompt

2. Install download_espa_order.py python package by running following code:

pip install git+https://github.com/USGS-EROS/espa-bulk-downloader.git|

16

Figure 16: Install ESPA bulk downloader

3. Check that it was succesfully installed with following code:

pip show download_espa_order

Figure 17: Check for ESPA bulk downloader

4. Start download with following code:

python /anaconda/bin/download_espa_order.py -e user@email.com
-o ALL -d ~/Directory/ -u user -p password

where

• user@email.com, user and password are the email, user name and password of the USGS account
created in step 1b of subsection 2.1.2.1 and

• ~/Directory/ is the directory where the files should be downloaded.

17

Figure 18: Download surface reflectance order

The surface reflectance data downloaded in this way is in scaled reflectance units (0.0001 scale factor). More
information on level-2 products, file names, content, atmospheric correction process, etc. can be found at
https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf and https://landsat.usgs.
gov/landsat-surface-reflectance-data-products.

More information on how to download surface reflectance can be found at https://landsat.usgs.gov/
landsat-surface-reflectance-data-products under section data access.

2.1.2.3 Cloud detection using Fmask

In order to detect bleaching events we will monitor historical surface reflectance patterns. However, in order to
do so reliably we must first filter out cloud and shadow observations. We will first use the top-of-atmosphere
reflectance to detect the presence of clouds or shadows in order to filter out noisy surface reflectance
observations affected by clouds. We will use a cloud detection algorithm called fmask (Zhu and Woodcock
(2012)) which is available in Matlab. We note that the quality band included in the top-of-atmosphere and
surface reflectance products already include cloud flags derived from a cloud detection algorithm called cfmask
(see https://landsat.usgs.gov/what-cfmask) which is an adaptation made by the USGS of the fmask algorithm.
However, as we will see, when comparing the results of Fmask and CFmask we noticed they were not identical.
Comparing both cloud flags against RGB top-of-atmosphere RGB images we considered fmask to detect
clouds better so we used the fmask flag to filter out cloudy observations. Although the data provided already
includes the fmask cloud filter, we include instructions on how to run fmask to aid in other reflectance based
studies or in order to update Maldives bleeching analysis with data published after May of 2017.

The fmask matlab files may be downloaded from https://github.com/prs021/fmask although we also provide
them. Additionally we provide the matlab file autoFmask_bulk which allows us to call fmask for different
landsat scenes. The following steps describe how to implement the fmask algorithm on the top-of-atmosphere
reflectence files downloaded in section 2.1.2.1.

1. Download fmask matlab files and autoFmask_bulk matlab file to your computer.

18

https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf
https://landsat.usgs.gov/landsat-surface-reflectance-data-products
https://landsat.usgs.gov/landsat-surface-reflectance-data-products
https://landsat.usgs.gov/landsat-surface-reflectance-data-products
https://landsat.usgs.gov/landsat-surface-reflectance-data-products
https://landsat.usgs.gov/what-cfmask
https://github.com/prs021/fmask

Figure 19: Download fmask matlab files

2. Open matlab and add fmask matlab folder and folder where autoFmask_bulk are to path (Home > Set
Path).

Figure 20: Set path of matlab files

3. Change working directory to folder where the TOA reflectance for different dates is located.

4. Type autoFmask_bulk into matlab command window

19

Figure 21: Change working directory and call fmask in bulk

2.1.3 Levels of reflectance data

Explain the different levels of data

2.1.4 Spectral bands

The landsat 8 level-1 product (top-of-atmosphere) provides information for the following bands:

Band Name type Wavelength (mi-
crometers)

Resolution data type units missing
flag

min max

BQA Quality Code Quality 30m UINT16 flag 0 65535
B1 Ultra blue (coastal/aerosol)

reflectance

0.435-0.451 30m INT16 DN 0 65535
B2 Blue 0.452-0.512 30m INT16 DN 0 65535
B3 Green 0.533-0.590 30m INT16 DN 0 65535
B4 Red 0.636-0.673 30m INT16 DN 0 65535
B5 Near Infrared (NIR) 0.851-0.879 30m INT16 DN 0 65535
B6 Shortwave Infrared (SWIR) 1 1.566-1.651 30m INT16 DN 0 65535
B7 Shortwave Infrared (SWIR) 2 2.107-2.294 30m INT16 DN 0 65535
B8 Panchromatic 0.503-0.676 15m INT16 DN 0 65535
B9 Cirrus 1.363-1.384 30m INT16 DN 0 65535
B10 Thermal infrared (TIRS) 1 10.60-11.19 100m INT16 DN 0 65535
B11 Thermal infrared (TIRS) 2 11.50-12.51 100m INT16 DN 0 65535

Table 1: Landsat 8 level-1 bands

The landsat 8 level-2 product (surface reflectance) provides information for the following bands:

Band Name type Wavelength (mi-
crometers)

Resolution data type units missing
flag

min max scaling factor

pixel_qa Level-2 quality Code
quality

30m UINT16 flag 1 0 32768
sr_aerosol Aerosol QA 30m UINT8 flag 0 255
radsat_qa Radiometric saturation QA 30m UINT16 flag 1 0 3839
B1 Ultra blue (coastal/aerosol)

reflectance

0.435-0.451 30m INT16 SR -9999 0 10000 0.0001
B2 Blue 0.452-0.512 30m INT16 SR -9999 0 10000 0.0001
B3 Green 0.533-0.590 30m INT16 SR -9999 0 10000 0.0001
B4 Red 0.636-0.673 30m INT16 SR -9999 0 10000 0.0001
B5 Near Infrared (NIR) 0.851-0.879 30m INT16 SR -9999 0 10000 0.0001
B6 Shortwave Infrared (SWIR) 1 1.566-1.651 30m INT16 SR -9999 0 10000 0.0001
B7 Shortwave Infrared (SWIR) 2 2.107-2.294 30m INT16 SR -9999 0 10000 0.0001

Table 2: Landsat 8 level-2 bands

We will explain both the level-1 and level-2 quality bands in section 2.1.5.

20

We now load into R the top of atmosphere and surface reflectance data for one date.
We'll construct the folder and file strings for each band
following the structure of files used First the file name
endings which indicate the relevant band
bands_TOAR <- c("B1", "B2", "B3", "B4", "B5", "B6", "B7", "BQA")
bands_SR <- c("sr_band1", "sr_band2", "sr_band3", "sr_band4",

"sr_band5", "sr_band6", "sr_band7", "pixel_qa", "radsat_qa")
Now the route of the order folder
orderFolder_TOAR <- "../data/landsat/fullScene/toa"
orderFolder_SR <- "../data/landsat/fullScene/sr"
Next the product folder
product_TOAR <- "L8 OLI_TIRS C1 Level-1"
product_SR <- "L8 OLI_TIRS C1 Level-2"
Next the date folders
dateFolder_TOAR <- "LC08_L1TP_145057_20170501_20170515_01_T1"
dateFolder_SR <- "LC081450572017050101T1-SC20170629205213_20170515_TP"
dateFolder_SR_2 <- paste(substr(dateFolder_SR, 1, 4), paste("L1",

substr(dateFolder_SR, 50, 51), sep = ""), substr(dateFolder_SR,
5, 10), substr(dateFolder_SR, 11, 18), substr(dateFolder_SR,
41, 48), substr(dateFolder_SR, 19, 20), substr(dateFolder_SR,
21, 22), sep = "_")

Now we form the file name strings with date folders and
band file endings
files_TOAR <- paste(dateFolder_TOAR, "_", bands_TOAR[-c(8)],

".TIF", sep = "")
files_SR <- paste(dateFolder_SR_2, "_", bands_SR[-c(8, 9)], ".tif",

sep = "")
file_TOAR_QA <- paste(dateFolder_TOAR, "_", bands_TOAR[8], ".TIF",

sep = "")
file_SR_cloudQA <- paste(dateFolder_SR_2, "_", bands_SR[8], ".tif",

sep = "")
file_SR_radsatQA <- paste(dateFolder_SR_2, "_", bands_SR[9],

".tif", sep = "")
fileFmask <- paste(dateFolder_TOAR, "_MTLFmask", sep = "")
file_TOAR_MTL <- paste(dateFolder_TOAR, "_MTL.txt", sep = "")
file_SR_MTL <- paste(dateFolder_SR_2, "_MTL.txt", sep = "")
Now we form the folder & file name with the order, product,
date folder strings and the file strings
files_TOAR <- paste(orderFolder_TOAR, product_TOAR, dateFolder_TOAR,

files_TOAR, sep = "/")
files_SR <- paste(orderFolder_SR, product_SR, dateFolder_SR,

files_SR, sep = "/")
file_TOAR_QA <- paste(orderFolder_TOAR, product_TOAR, dateFolder_TOAR,

file_TOAR_QA, sep = "/")
file_SR_cloudQA <- paste(orderFolder_SR, product_SR, dateFolder_SR,

file_SR_cloudQA, sep = "/")
file_SR_radsatQA <- paste(orderFolder_SR, product_SR, dateFolder_SR,

file_SR_radsatQA, sep = "/")
fileFmask <- paste(orderFolder_TOAR, product_TOAR, dateFolder_TOAR,

fileFmask, sep = "/")
file_TOAR_MTL <- paste(orderFolder_TOAR, product_TOAR, dateFolder_TOAR,

file_TOAR_MTL, sep = "/")
file_SR_MTL <- paste(orderFolder_SR, product_SR, dateFolder_SR,

21

file_SR_MTL, sep = "/")

Now we use the stack function from the raster package to
load the reflectance data into a stack file
scene_TOAR.r <- stack(files_TOAR)
names(scene_TOAR.r) <- bands_TOAR[-c(8)]
scene_SR.r <- stack(files_SR)
names(scene_SR.r) <- bands_TOAR[-c(8)]

Lets look at all the top-of-atmosphere bands separately.
plot(scene_TOAR.r)

40
00

00
55

00
00

B1

0
10000
20000
30000
40000

B2

0
10000
20000
30000
40000
50000

B3

0
10000
20000
30000
40000
50000

40
00

00
55

00
00

B4

0
10000
20000
30000
40000
50000

B5

0
10000
20000
30000
40000
50000

B6

0
5000
10000
15000
20000
25000
30000
35000

250000 400000

40
00

00
55

00
00

B7

0
5000
10000
15000
20000
25000
30000

We can combine the red, green and blue bands to obtain a normal RGB image.
plotRGB(scene_TOAR.r, 4, 3, 2, scale = 65535)

22

We do the same for the surface reflectance data.
plot(scene_SR.r)

23

40
00

00
55

00
00

B1

0
2000
4000
6000
8000
10000

B2

0
2000
4000
6000
8000
10000

B3

0
2000
4000
6000
8000
10000

40
00

00
55

00
00

B4

0
2000
4000
6000
8000
10000

B5

0
2000
4000
6000
8000
10000

B6

0
2000
4000
6000

250000 400000

40
00

00
55

00
00

B7

0
1000
2000
3000
4000
5000
6000

To combine surface reflectance red, green and blue bands into a normal RGB image we must first re-scale the
data.
minValue(raster) much faster than min(value)
minSR <- min(minValue(scene_SR.r[[c(4, 3, 2)]]))
maxSR <- max(maxValue(scene_SR.r[[c(4, 3, 2)]]))
rescaling to 0-1
scaleSR <- function(x) (x - minSR)/(maxSR - minSR)

calc(raster, function) much faster than function(raster)
scene_SR_2.r <- calc(scene_SR.r[[c(4, 3, 2)]], scaleSR)

plotRGB(scene_SR_2.r, 1, 2, 3, scale = 1)

24

We finish this subsection by plotting the landsat scene and overlaying the Maldives atoll shapes.
Transform the malidves shape object collection into the
geographic reference system of landsat info
maldives.shp <- spTransform(maldives.shp, CRSobj = CRS(projection(scene_TOAR.r)))
Crop the maldives shape object collection to landsat scene
maldives.shp <- crop(maldives.shp, extent(scene_TOAR.r))
We also transform the 36 km^2 rectangle object into landsat
coordinates
rect <- spTransform(rect, CRSobj = CRS(projection(scene_TOAR.r)))
sqrt(gArea(rect))/1000 # around 36km^2 atoll scene

[1] 36.25075

plotRGB(scene_TOAR.r, 4, 3, 2, scale = 65535)
plot(maldives.shp, add = T, border = c("blue", "green", "red")[match(maldives.shp$RB_DEPTH_A,

c("deep_reef", "shallow_reef", "variable_depth_reef"))])
plot(rect, add = T, border = "purple")

25

2.1.5 Quality flags

We will use the level-1 Quality Assurance band BQA and the level-2 quality bands pixel_qa and radsat_qa.
The BQA encodes flags concerning the presence of cloud, shadow, snow and water affecting the quality of the
level-1 measurements for a given pixel. The Level-2 Pixel Quality Assurance band (pixel_qa) is calculated
using information from the Level-1 Quality Assurance band, specifically Cloud Confidence, Cloud Shadow
and Snow/Ice flags. Additionally water values are re-calculated, and high-confidence cloud pixels are dilated.
(see section 7.2 from https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf). The
Radiometric Saturation Quality (radsat_qa) band is a bit packed representation of which sensor bands were
saturated during data capture, yielding unusable data. The level-2 download described in section 2.1.2.2 also
includes an Internal Surface Reflectance Aerosol Quality (sr_aerosol) band which provides low-level detail
about the factors that may have influenced atmospheric correction. We do not work with this quality band.

Lets first load the quality bands into a raster object in R .
scene_TOAR_QA.r <- raster(file_TOAR_QA)
scene_SR_cloudQA.r <- raster(file_SR_cloudQA)
scene_SR_radsatQA.r <- raster(file_SR_radsatQA)

We now plot them together with to get a sense of the information they provide.
plot(stack(list(BQA = scene_TOAR_QA.r, pixel_qa = scene_SR_cloudQA.r,

radsat_qa = scene_SR_radsatQA.r)), box = F, axes = F)

26

https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf

BQA

1000
2000
3000
4000
5000
6000
7000

pixel_qa

400
500
600
700
800
900

radsat_qa

−1e−03
−5e−04
0e+00
5e−04
1e−03

Comparing them to the RGB image of the scene we can see they contain cloud information and that
there appear to be no saturation problems. However, we have not yet decoded this information into easily
interpretable flags. We will do this later in this section. We first load the fmask band to R . The fmask
algorithm in matlab produces High Dynamic Range image file (.hdr) which we load into R using the read.ENVI
function from the caTools package.
library(caTools)
fmask.r <- raster(read.ENVI(fileFmask, headerfile = paste(fileFmask,

".hdr", sep = "")), crs = CRS(projection(scene_TOAR.r)),
template = scene_TOAR.r)

the value '255' is missing value in fmask
values(fmask.r)[which(values(fmask.r) == 255)] <- NA
table(values(fmask.r))

##
0 1 2 3 4
1762 13817798 246991 6257 27381416

The following table shows the coding for the fmask flag:

Value Meaning
0 land
1 clear water
2 cloud shadow
3 snow
4 cloud
255 outside scene
—— ——————-

27

We now plot the fmask quality band showing land and water pixels (0 or 1) and compare to the landsat
quality bands:
plot(stack(list(BQA = scene_TOAR_QA.r, pixel_qa = scene_SR_cloudQA.r,

fmask = fmask.r, fmask_flag = !(fmask.r %in% c(0, 1)))))

40
00

00
50

00
00

BQA

1000
2000
3000
4000
5000
6000
7000

pixel_qa

400
500
600
700
800
900

250000 350000 450000

40
00

00
50

00
00

fmask

0
1
2
3
4

250000 350000 450000

fmask_flag

0.0
0.2
0.4
0.6
0.8
1.0

As we can see, the fmask band is slightly different to the landsat quality bands. By now we have loaded
all the pixelwise information for the chosen landsat scene and date. The scenewise information is stored in
the MTL metafile. We use the readMeta from the RStoolbox package to read this file which has a special
format. In particular we are interested in obtaining the exact hour at which the scene was captured since we
will use this information later on.
library(RStoolbox)
MTL_TOAR <- readMeta(file_TOAR_MTL, raw = FALSE)
MTL_TOAR$ACQUISITION_DATE

[1] "2017-05-01 05:18:43 GMT"

MTL_SR <- readMeta(file_SR_MTL, raw = FALSE)
MTL_SR$ACQUISITION_DATE

[1] "2017-05-01 05:18:43 GMT"

Since decoding the quality flags will be a resource intensive task we first crop the landsat scene to the 5.35
km2 study area we chose in section 2.1.1.
need to convert 5.35km^2 extent to landsat coordinates
before cropping
ext <- myExtent

28

pts <- expand.grid(x = ext[1:2], y = ext[3:4])
pts <- pts[c(1, 2, 4, 3, 1),]
P1 <- Polygon(pts)
Ps1 <- list(Polygons(list(P1), ID = 1))
rect <- SpatialPolygons(Ps1, proj4string = CRS(projection(wrs2)))
rect <- spTransform(rect, CRSobj = CRS(projection(scene_TOAR.r)))
myExtent <- extent(rect)

Crop all level-1 top-of-atmosphere, level-2 surface
refletance, quality bands and maldives shape object to
5.35km^2 extent
scene_TOAR.r <- crop(scene_TOAR.r, myExtent)
scene_SR.r <- crop(scene_SR.r, myExtent)
scene_TOAR_QA.r <- crop(scene_TOAR_QA.r, myExtent)
scene_SR_cloudQA.r <- crop(scene_SR_cloudQA.r, myExtent)
fmask.r <- crop(fmask.r, myExtent)
scene_SR_radsatQA.r <- crop(scene_SR_radsatQA.r, myExtent)
maldives.shp <- crop(maldives.shp, myExtent)

plotRGB(scene_TOAR.r, 4, 3, 2)
plot(maldives.shp, add = T, border = c("blue", "green", "red")[match(maldives.shp$RB_DEPTH_A,

c("deep_reef", "shallow_reef", "variable_depth_reef"))])

Since we have now loaded a raster object of our chosen study area we have available a raster grid for this area
and we can rasterize the maldives shape object collection using the rasterize function from the raster

29

package.
rasterize maldives shape object collection using 5.35km^2
study area landsat raster grid
coral.r <- rasterize(maldives.shp, scene_TOAR.r, field = as.numeric(maldives.shp$RB_DEPTH_A))

table(values(coral.r))/ncell(coral.r) * 100 # 26.75% shallow reef, 2.19% variable depth reef

##
2 3
26.750471 2.190446

sum(is.na(values(coral.r)))/ncell(coral.r) * 100 # 71.06% non-reef

[1] 71.05908

plot(coral.r, legend = F, box = F, axes = F, col = c("green",
"red"))

We now generate some more rasters which might help us to detect special bleaching patterns.
Generate a water/non-reef raster.
water.r <- is.na(coral.r)
values(water.r)[which(values(water.r) == 0)] <- NA
Generate a raster which shows nearest distance to a
non-reef pixel of each pixel
waterBuffer.r <- buffer(water.r, width = 30 * 3, doEdge = T)
Generate an indicator raster showing coral-reef edges
coralThickEdge.r <- waterBuffer.r & is.na(water.r)
We stack original coral reef raster with newly generated
rasters
coral.r <- stack(coral.r, clump(coral.r), coralThickEdge.r, distance(water.r))

Loading required namespace: igraph

names(coral.r) <- c("coralType", "coralID", "coralEdge", "distanceWater")

plot(coral.r)

30

43
00

00
43

30
00

coralType

2.0
2.2
2.4
2.6
2.8
3.0

coralID

5
10
15
20
25

326000 329000 332000

43
00

00
43

30
00

coralEdge

0.0
0.2
0.4
0.6
0.8
1.0

326000 329000 332000

distanceWater

0
200
400
600
800

We will now decode the landsat quality bands to obtain easily interpretable quality flags. The level-
1 quality band BQA can be decoded with the following table taken from https://landsat.usgs.gov/
collectionqualityband. We note that table 5.1 from https://landsat.usgs.gov/sites/default/files/documents/
Landsat8DataUsersHandbook.pdf has conflicting information but the first source seems to be consitent with
the data.

Inverse position in 16-bit variable encoded values description

0 designated fill 0
1

1 terrain occlusion 0 no
1 yes

2-3 radiometric saturation

00 No bands contain saturation
01 1-2 bands contain saturation
10 3-4 bands contain saturation
11 5 or more bands contain saturation

4 cloud 0 no
1 yes

5-6 cloud confidence

00 Not Determined
01 Low (0-33%)
10 Medium (34-66%)
11 High (67-100%)

7-8 cloud shadow confidence

00 Not Determined
01 Low (0-33%)
10 Medium (34-66%)
11 High (67-100%)

9-10 snow/ice confidence

00 Not Determined
01 Low (0-33%)
10 Medium (34-66%)
11 High (67-100%)

11-12 cirrus confidence

00 Not Determined
01 Low (0-33%)
10 Medium (34-66%)
11 High (67-100%)

Table 4: BQA quality flags

We now write a function unravelQA in R to implement this decoding.
Helper function which transforms integer to k-bits (default
16 bits) This function will be used by decoding functions.
first_k_bits <- function(int, k = 16, reverse = T) {

31

https://landsat.usgs.gov/collectionqualityband
https://landsat.usgs.gov/collectionqualityband
https://landsat.usgs.gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf
https://landsat.usgs.gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf

integer_vector <- as.integer(intToBits(int))[1:k]
if (reverse)

integer_vector <- rev(integer_vector)
return(paste(as.character(integer_vector), collapse = ""))

}

unravelQA <- function(sceneQA.r) {

transform integer values to 16 bits
ints <- sapply(values(sceneQA.r), first_k_bits, reverse = F)
designated fill
fill.r <- sceneQA.r
values(fill.r) <- as.numeric(as.factor(substr(ints, 1, 1))) -

1
terrain occlusion
terrainOcclusion.r <- sceneQA.r
values(terrainOcclusion.r) <- as.numeric(as.factor(substr(ints,

2, 2))) - 1
radiometric saturation
sat.r <- sceneQA.r
values(sat.r) <- as.numeric(as.factor(substr(ints, 3, 4))) -

1
cloud flag
cloud.r <- sceneQA.r
values(cloud.r) <- as.numeric(as.factor(substr(ints, 5, 5))) -

1
cloud confidence
cloudConf.r <- sceneQA.r
values(cloudConf.r) <- as.numeric(as.factor(substr(ints,

6, 7))) - 1
cloud shadow confidence
cloudShadowConf.r <- sceneQA.r
values(cloudShadowConf.r) <- as.numeric(as.factor(substr(ints,

8, 9))) - 1
snow/ice confidence
snowIceConf.r <- sceneQA.r
values(snowIceConf.r) <- as.numeric(as.factor(substr(ints,

10, 11))) - 1
QA.r <- stack(fill.r, terrainOcclusion.r, sat.r, cloud.r,

cloudConf.r, cloudShadowConf.r, snowIceConf.r)
names(QA.r) <- c("Designated Fill", "Terrain occlusion",

"Radiometric Saturation", "Cloud", "Cloud Confidence",
"Cloud Shadow Confidence", "Snow/Ice Confidence")

return(QA.r)
}

The level-2 quality band pixel_qa can be decoded with the following table taken from the table 7.2 from
https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf.

32

https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf

Inverse position in 16-bit variable encoded values description

0 designated fill 0
1

1 clear 0 no
1 yes

2 water 0 no
1 yes

3 cloud shadow 0 no
1 yes

4 snow 0 no
1 yes

5 cloud 0 no
1 yes

6-7 cloud confidence

00 none
01 low
10 medium
11 high

8-9 cirrus confidence

00 not set
01 low from band 9
10 medium from band 9
11 high from band 9

10 terrain occlusion 0 no
1 yes

Table 5: pixel_qa quality flags

We now write a function unravelQA_l2_cld in R to implement this decoding.
unravelQA_l2_cld <- function(sceneQA.r) {

transform integer values to 16 bits
ints <- sapply(values(sceneQA.r), first_k_bits, reverse = F)

designated fill
fill.r <- sceneQA.r
values(fill.r) <- as.numeric(as.factor(substr(ints, 1, 1))) -

1
clear pixel flag
clear.r <- sceneQA.r
values(clear.r) <- as.numeric(as.factor(substr(ints, 2, 2))) -

1
water flag
water.r <- sceneQA.r
values(water.r) <- as.numeric(as.factor(substr(ints, 3, 3))) -

1
shadow flag
shadow.r <- sceneQA.r
values(shadow.r) <- as.numeric(as.factor(substr(ints, 4,

4))) - 1
snow flag
snow.r <- sceneQA.r
values(snow.r) <- as.numeric(as.factor(substr(ints, 5, 5))) -

1
cloud flag
cloud.r <- sceneQA.r
values(cloud.r) <- as.numeric(as.factor(substr(ints, 6, 6))) -

1
cloud confidence
cloudConfidence.r <- sceneQA.r
values(cloudConfidence.r) <- as.numeric(as.factor(substr(ints,

7, 8))) - 1
cirrus confidence
cirrusConfidence.r <- sceneQA.r
values(cirrusConfidence.r) <- as.numeric(as.factor(substr(ints,

9, 10))) - 1
terrain occlusion flag
terrainOcclusion.r <- sceneQA.r

33

values(terrainOcclusion.r) <- as.numeric(as.factor(substr(ints,
11, 11))) - 1

QA.r <- stack(fill.r, clear.r, water.r, shadow.r, snow.r,
cloud.r, cloudConfidence.r, cirrusConfidence.r, terrainOcclusion.r)

names(QA.r) <- c("designated fill", "clear pixel", "water",
"shadow", "snow", "cloud", "cloud confidence", "cirrus confidence",
"terrain occlusion")

return(QA.r)
}

The level-2 quality band radsat_qa can be decoded with the following table taken from the table 7.5 from
https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf.

Inverse position in 16-bit variable encoded values description

0 data fill flag 0 valid data
1 invalid data

1 band 1 saturation 0 no
1 yes

2 band 2 saturation 0 no
1 yes

3 band 3 saturation 0 no
1 yes

4 band 4 saturation 0 no
1 yes

5 band 5 saturation 0 no
1 yes

6 band 6 saturation 0 no
1 yes

7 band 7 saturation 0 no
1 yes

8 not used 0
1

9 band 9 saturation 0 no
1 yes

10 band 10 saturation 0 no
1 yes

11 band 11 saturation 0 no
1 yes

Table 6: radsatl_qa quality flags

We now write a function unravelQA_l2_rad in R to implement this decoding.
unravelQA_l2_rad <- function(sceneQA.r) {

transform integer values to 16 bits
ints <- sapply(values(sceneQA.r), first_k_bits, reverse = F)
fill
fill.r <- sceneQA.r
values(fill.r) <- as.numeric(as.factor(substr(ints, 1, 1))) -

1
band 1 saturation flag
band1.r <- sceneQA.r
values(band1.r) <- as.numeric(as.factor(substr(ints, 2, 2))) -

1
band 2 saturation flag
band2.r <- sceneQA.r
values(band2.r) <- as.numeric(as.factor(substr(ints, 3, 3))) -

1
band 3 saturation flag
band3.r <- sceneQA.r
values(band3.r) <- as.numeric(as.factor(substr(ints, 4, 4))) -

1
band 4 saturation flag
band4.r <- sceneQA.r
values(band4.r) <- as.numeric(as.factor(substr(ints, 5, 5))) -

1

34

https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf

band 5 saturation flag
band5.r <- sceneQA.r
values(band5.r) <- as.numeric(as.factor(substr(ints, 6, 6))) -

1
band 6 saturation flag
band6.r <- sceneQA.r
values(band6.r) <- as.numeric(as.factor(substr(ints, 7, 7))) -

1
band 7 saturation flag
band7.r <- sceneQA.r
values(band7.r) <- as.numeric(as.factor(substr(ints, 8, 8))) -

1
should not be used according to manual
test.r <- sceneQA.r
values(test.r) <- as.numeric(as.factor(substr(ints, 9, 9))) -

1

since we don't use keep bands 8-11 we won't keep their
saturation flags

QA.r <- stack(band1.r, band2.r, band3.r, band4.r, band5.r,
band6.r, band7.r, test.r)

names(QA.r) <- c("B1", "B2", "B3", "B4", "B5", "B6", "B7",
"test")

return(QA.r)
}

We apply decoding functions to obtain stacks with respective quality flags.
QA_TOAR.r <- unravelQA(scene_TOAR_QA.r)
cloudQA_SR.r <- unravelQA_l2_cld(scene_SR_cloudQA.r)
radsatQA_SR.r <- unravelQA_l2_rad(scene_SR_radsatQA.r)

We know plot these quality flag rasters.
plot(QA_TOAR.r)

35

43
00

00
43

30
00

Designated.Fill

−1e−03
−5e−04
0e+00
5e−04
1e−03

Terrain.occlusion

−1e−03
−5e−04
0e+00
5e−04
1e−03

Radiometric.Saturation

−1e−03
−5e−04
0e+00
5e−04
1e−03

43
00

00
43

30
00

Cloud

0.0
0.2
0.4
0.6
0.8
1.0

Cloud.Confidence

0.0
0.5
1.0
1.5
2.0

Cloud.Shadow.Confidence

0.0
0.2
0.4
0.6
0.8
1.0

326000 330000

43
00

00
43

30
00

Snow.Ice.Confidence

−1e−03
−5e−04
0e+00
5e−04
1e−03

plot(cloudQA_SR.r)

36

43
00

00
43

30
00

designated.fill

−1e−03
−5e−04
0e+00
5e−04
1e−03

clear.pixel

0.0
0.2
0.4
0.6
0.8
1.0

water

0.0
0.2
0.4
0.6
0.8
1.0

43
00

00
43

30
00

shadow

0.0
0.2
0.4
0.6
0.8
1.0

snow

−1e−03
−5e−04
0e+00
5e−04
1e−03

cloud

0.0
0.2
0.4
0.6
0.8
1.0

326000 330000

43
00

00
43

30
00

cloud.confidence

0.0
0.5
1.0
1.5
2.0

326000 330000

cirrus.confidence

0.0
0.2
0.4
0.6
0.8
1.0

326000 330000

terrain.occlusion

−1e−03
−5e−04
0e+00
5e−04
1e−03

plot(radsatQA_SR.r)

37

43
00

00
43

30
00

B1

−1e−03
−5e−04
0e+00
5e−04
1e−03

B2

−1e−03
−5e−04
0e+00
5e−04
1e−03

B3

−1e−03
−5e−04
0e+00
5e−04
1e−03

43
00

00
43

30
00

B4

−1e−03
−5e−04
0e+00
5e−04
1e−03

B5

−1e−03
−5e−04
0e+00
5e−04
1e−03

B6

−1e−03
−5e−04
0e+00
5e−04
1e−03

326000 330000

43
00

00
43

30
00

B7

−1e−03
−5e−04
0e+00
5e−04
1e−03

326000 330000

test

−1e−03
−5e−04
0e+00
5e−04
1e−03

We can now better compare landsat cloud flags with fmask flag.
plot(stack(list(QA_TOAR.r[[c("Cloud", "Cloud.Confidence")]],

cloudQA_SR.r[[c("cloud", "cloud.confidence")]], fmask = fmask.r,
fmask_flag = !(fmask.r %in% c(0, 1)))))

38

42
90

00
43

10
00

43
30

00
43

50
00 Cloud

0.0

0.2

0.4

0.6

0.8

1.0

Cloud.Confidence

0.0

0.5

1.0

1.5

2.0

cloud

0.0

0.2

0.4

0.6

0.8

1.0

327000 329000 331000

42
90

00
43

10
00

43
30

00
43

50
00 cloud.confidence

0.0

0.5

1.0

1.5

2.0

327000 329000 331000

fmask

0

1

2

3

4

327000 329000 331000

fmask_flag

0.0

0.2

0.4

0.6

0.8

1.0

We again see there are some differences between landsat cloud flags obtained using cfmask algorithm and
fmask cloud flag.

We have loaded all the landsat top-of-atmosphere and surface reflectance information for the one date for our
chosen study area. We now load the data for the three dates for which landsat data is provided. We do this
in order to provide the code necessary to load several dates in bulk. We have previously ran this code for all
74 dates and will simply load the results, which are provided, further on. We start by obtaining the names of
the directories for each of the dates which we wish to load.
We read the date folders available in the appropriate
directory using the dir() function. In the case of TOA
files, these also make up the first part of the TOA
reflectance files.
dateFolders_TOAR <- dir(paste(orderFolder_TOAR, product_TOAR,

sep = "/"))
dateFolders_SR <- dir(paste(orderFolder_SR, product_SR, sep = "/"))
In the case of SR files we need to reorder the string in
order to obtain the first part of the SR reflectance files
dateFolders_SR_2 <- paste(substr(dateFolders_SR, 1, 4), paste("L1",

substr(dateFolders_SR, 50, 51), sep = ""), substr(dateFolders_SR,
5, 10), substr(dateFolders_SR, 11, 18), substr(dateFolders_SR,
41, 48), substr(dateFolders_SR, 19, 20), substr(dateFolders_SR,
21, 22), sep = "_")

We now obtain the the dates for which we have top-of-atmosphere and surface reflectance information.

39

we isolate the date from the folder string
top-of-atmosphere
dates_TOAR <- as.Date(sapply(strsplit(dateFolders_TOAR, "_"),

function(x) x)[4,], format = "%Y%m%d")
indx <- order(dates_TOAR)
dateFolders_TOAR <- dateFolders_TOAR[indx]
dates_TOAR <- dates_TOAR[indx]
surface
dates_SR <- as.Date(substr(dateFolders_SR, 11, 18), format = "%Y%m%d")
indx <- order(dates_SR)
dateFolders_SR <- dateFolders_SR[indx]
dates_SR <- dates_SR[indx]

we will use dates for which there is both top-of-atmosphere
and surface reflectance available
dates <- as.Date(intersect(dates_TOAR, dates_SR), origin = as.Date("1970-01-01"))

Before looping through the dates and loading the pixelwise reflectance information we can already load certain
scenewise information which is encoded in the folder names. The folder and file naming conventions can be
found at https://landsat.usgs.gov/what-are-naming-conventions-landsat-scene-identifiers in the case of level-1
data and on page 17 of https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf in
the case of level-2 data.
we obtain the indices relating the dates we will use to the
folder string names
indx_TOAR <- match(dates, dates_TOAR)
indx_SR <- match(dates, dates_SR)

we obtain the satellite-sensor (satSens), processing
correction level or tier (procLevel), and the collection
number and category (colCat) available for each date
top-of-atmosphere
satSens_TOAR <- substr(dateFolders_TOAR[indx_TOAR], 1, 4)
procLevel_TOAR <- substr(dateFolders_TOAR[indx_TOAR], 8, 9)
colCat_TOAR <- paste("01", substr(dateFolders_TOAR[indx_TOAR],

39, 40), sep = "") #we only used collection 1
surface
satSens_SR <- substr(dateFolders_SR[indx_SR], 1, 4)
procLevel_SR <- substr(dateFolders_SR[indx_SR], 50, 51)
colCat_SR <- paste("01", substr(dateFolders_SR[indx_SR], 21,

22), sep = "")
we make sure that the TOA variables are the same as the SR
variables
all(satSens_TOAR == satSens_SR)

[1] TRUE

all(procLevel_TOAR == procLevel_SR)

[1] TRUE

all(colCat_TOAR == colCat_SR)

[1] TRUE

40

https://landsat.usgs.gov/what-are-naming-conventions-landsat-scene-identifiers
https://landsat.usgs.gov/sites/default/files/documents/lasrc_product_guide.pdf

since they are all the same we keep datewise
satellite-sensor, tier and collection number-category
variables.
satSens <- satSens_SR
remove(satSens_TOAR, satSens_SR)
procLevel <- procLevel_SR
remove(procLevel_TOAR, procLevel_SR)
colCat <- colCat_SR
remove(colCat_TOAR, colCat_SR)

We will now loop through all the dates loading the corresponding landsat top-of-atmosphere and surface
reflectance information as we did in the case of one date. We will not store it in raster/stack objects since
they only provide three dimensions: two spatial dimensions and one for time and bands. We prefer to store
it in four-dimensional arrays so that we may have two spatial dimensions, a time-dimension and a spectral
band dimension.
load abind library which contains abind() function allowing
arrays to be bound along a chosen dimension
library(abind)

we loop through available dates
for (i in 1:length(dates)) {

we form strings with filenames of different bands including
complete path
files_TOAR <- paste(dateFolders_TOAR[indx_TOAR[i]], "_",

bands_TOAR[-c(8)], ".TIF", sep = "")
files_SR <- paste(dateFolders_SR_2[indx_SR[i]], "_", bands_SR[-c(8,

9)], ".tif", sep = "")
file_TOAR_QA <- paste(dateFolders_TOAR[indx_TOAR[i]], "_",

bands_TOAR[8], ".TIF", sep = "")
file_SR_cloudQA <- paste(dateFolders_SR_2[indx_SR[i]], "_",

bands_SR[8], ".tif", sep = "")
file_SR_radsatQA <- paste(dateFolders_SR_2[indx_SR[i]], "_",

bands_SR[9], ".tif", sep = "")
fileFmask <- paste(dateFolders_TOAR[indx_TOAR[i]], "_MTLFmask",

sep = "")
file_TOAR_MTL <- paste(dateFolders_TOAR[indx_TOAR[i]], "_MTL.txt",

sep = "")
file_SR_MTL <- paste(dateFolders_SR_2[indx_SR[i]], "_MTL.txt",

sep = "")

files_TOAR <- paste(orderFolder_TOAR, product_TOAR, dateFolders_TOAR[indx_TOAR[i]],
files_TOAR, sep = "/")

files_SR <- paste(orderFolder_SR, product_SR, dateFolders_SR[indx_SR[i]],
files_SR, sep = "/")

file_TOAR_QA <- paste(orderFolder_TOAR, product_TOAR, dateFolders_TOAR[indx_TOAR[i]],
file_TOAR_QA, sep = "/")

file_SR_cloudQA <- paste(orderFolder_SR, product_SR, dateFolders_SR[indx_SR[i]],
file_SR_cloudQA, sep = "/")

file_SR_radsatQA <- paste(orderFolder_SR, product_SR, dateFolders_SR[indx_SR[i]],
file_SR_radsatQA, sep = "/")

fileFmask <- paste(orderFolder_TOAR, product_TOAR, dateFolders_TOAR[indx_TOAR[i]],
fileFmask, sep = "/")

41

file_TOAR_MTL <- paste(orderFolder_TOAR, product_TOAR, dateFolders_TOAR[indx_TOAR[i]],
file_TOAR_MTL, sep = "/")

file_SR_MTL <- paste(orderFolder_SR, product_SR, dateFolders_SR[indx_SR[i]],
file_SR_MTL, sep = "/")

load files into raster/stack objects using stack
functionfrom raster package bands 1-7
aux_scene_TOAR.r <- stack(files_TOAR)
names(aux_scene_TOAR.r) <- bands_TOAR[-c(8)]
aux_scene_SR.r <- stack(files_SR)
names(aux_scene_SR.r) <- bands_TOAR[-c(8)]
quality bands
aux_scene_TOAR_QA.r <- raster(file_TOAR_QA)
aux_scene_SR_cloudQA.r <- raster(file_SR_cloudQA)
aux_scene_SR_radsatQA.r <- raster(file_SR_radsatQA)
fmask band
aux_fmask.r <- raster(read.ENVI(fileFmask, headerfile = paste(fileFmask,

".hdr", sep = "")), crs = CRS(projection(aux_scene_TOAR.r)),
template = aux_scene_TOAR.r)

load scenewise acquisition date including time images were
captured
aux_MTL_TOAR <- readMeta(file_TOAR_MTL, raw = FALSE)
aux_TIME_TOAR <- aux_MTL_TOAR$ACQUISITION_DATE
aux_MTL_SR <- readMeta(file_SR_MTL, raw = FALSE)
aux_TIME_SR <- aux_MTL_SR$ACQUISITION_DATE

crop scenes to our chosen 5.35km^2 area to avoid loading
too much information to memory
aux_scene_TOAR.r <- crop(aux_scene_TOAR.r, myExtent)
aux_scene_SR.r <- crop(aux_scene_SR.r, myExtent)
aux_scene_TOAR_QA.r <- crop(aux_scene_TOAR_QA.r, myExtent)
aux_scene_SR_cloudQA.r <- crop(aux_scene_SR_cloudQA.r, myExtent)
aux_fmask.r <- crop(aux_fmask.r, myExtent)
aux_scene_SR_radsatQA.r <- crop(aux_scene_SR_radsatQA.r,

myExtent)
wait until after cropping to recode fill values to make it
faster
values(aux_fmask.r)[which(values(aux_fmask.r) == 255)] <- NA

decode quality bands into easily interpretable quality
flags
aux_QA_TOAR.r <- unravelQA(aux_scene_TOAR_QA.r)
aux_cloudQA_SR.r <- unravelQA_l2_cld(aux_scene_SR_cloudQA.r)
aux_radsatQA_SR.r <- unravelQA_l2_rad(aux_scene_SR_radsatQA.r)

transform raster objects into 3D arrays
aux_scene_TOAR.ar <- as.array(aux_scene_TOAR.r)
aux_scene_SR.ar <- as.array(aux_scene_SR.r)
aux_fmask.ar <- as.array(aux_fmask.r)
aux_QA_TOAR.ar <- as.array(aux_QA_TOAR.r)
aux_cloudQA_SR.ar <- as.array(aux_cloudQA_SR.r)

42

aux_radsatQA_SR.ar <- as.array(aux_radsatQA_SR.r)

bind arrays along fourth time dimension if its the first
date we simply initialize final arrays
if (i == 1) {

scene_TOAR.ar <- aux_scene_TOAR.ar
scene_SR.ar <- aux_scene_SR.ar
fmask.ar <- aux_fmask.ar
QA_TOAR.ar <- aux_QA_TOAR.ar
cloudQA_SR.ar <- aux_cloudQA_SR.ar
radsatQA_SR.ar <- aux_radsatQA_SR.ar

TIME_TOAR <- aux_TIME_TOAR
TIME_SR <- aux_TIME_SR

for second date onwards we bind current 3d array to 4d
array holding previous dates along the fourth time
dimension

} else {
scene_TOAR.ar <- abind(scene_TOAR.ar, aux_scene_TOAR.ar,

along = 4)
scene_SR.ar <- abind(scene_SR.ar, aux_scene_SR.ar, along = 4)
fmask.ar <- abind(fmask.ar, aux_fmask.ar, along = 4)
QA_TOAR.ar <- abind(QA_TOAR.ar, aux_QA_TOAR.ar, along = 4)
cloudQA_SR.ar <- abind(cloudQA_SR.ar, aux_cloudQA_SR.ar,

along = 4)
radsatQA_SR.ar <- abind(radsatQA_SR.ar, aux_radsatQA_SR.ar,

along = 4)

acquisition time is simply bound in a vector
TIME_TOAR <- c(TIME_TOAR, aux_TIME_TOAR)
TIME_SR <- c(TIME_SR, aux_TIME_SR)

}

print dimension of array to keep track of stacking progress
print(dim(scene_TOAR.ar))

}

[1] 185 172 7
[1] 185 172 7 2
[1] 185 172 7 3

once we have finished looping through dates we name the
dimensions and dimension values of arrays as this will
facilitate their processing and manipulation later on
coords <- as.data.frame(coordinates(aux_scene_TOAR.r))
dimnames(scene_TOAR.ar) <- list(y = unique(coords$y), x = unique(coords$x),

var = names(scene_TOAR.r), date = as.character(dates))
dimnames(scene_SR.ar) <- list(y = unique(coords$y), x = unique(coords$x),

var = names(scene_SR.r), date = as.character(dates))
dimnames(QA_TOAR.ar) <- list(y = unique(coords$y), x = unique(coords$x),

var = names(QA_TOAR.r), date = as.character(dates))
dimnames(cloudQA_SR.ar) <- list(y = unique(coords$y), x = unique(coords$x),

var = names(cloudQA_SR.r), date = as.character(dates))

43

dimnames(radsatQA_SR.ar) <- list(y = unique(coords$y), x = unique(coords$x),
var = names(radsatQA_SR.r), date = as.character(dates))

dimnames(fmask.ar) <- list(y = unique(coords$y), x = unique(coords$x),
var = "fmask_class", date = as.character(dates))

we make sure that the TOA time is the same as the SR time
all(TIME_TOAR == TIME_SR)

[1] TRUE

since they are the same we keep datewise time of
acquisition
TIME <- TIME_SR
remove(TIME_TOAR, TIME_SR)

We now load the top of atmosphere and surface reflectance arrays with all 74 files which we have obtained
earlier.
Load all dates of TOA, SR and Fmask data arrays for chosen
area and dates
load(file = "../data/landsat/croppedScene/arrays74dates_atoll.RData")
dates <- as.Date(dimnames(scene_TOAR.ar)$date)

2.1.6 Study period

We know we have 74 dates available. The landsat passes over every scene on earth once every 16 days so that
should be the frequency, however errors or malfunctions can cause information for some dates to be lost or
never captured. Lets see the frequency and distribution of the dates we have obtained.
number of dates
length(dates) # 74 dates

[1] 74

range of dates
summary(dates) # From 2013-05-22 to 2017-06-02

Min. 1st Qu. Median Mean 3rd Qu.
"2013-05-22" "2014-07-16" "2015-09-09" "2015-07-27" "2016-07-29"
Max.
"2017-06-02"

obtain the frequency of observations
freq <- dates[2:length(dates)] - dates[1:(length(dates) - 1)]
range of frequencies
summary(as.numeric(freq)) # max period between dates is 112

Min. 1st Qu. Median Mean 3rd Qu. Max.
16.00 16.00 16.00 20.16 16.00 112.00

Lets plot the frequency of reflectance observations for the study period between 2013-05-22 to 2017-06-02.
plot(dates[-1], freq, type = "b")

44

2014 2015 2016 2017

20
40

60
80

10
0

dates[−1]

fr
eq

We can see that the frequency of observations is mostly 16 days however sometime during 2015 there 112 days
passed between observations. This is possibly due to some kind of technical error. Lets see the distribution of
observations accross the months of the year.
Use function month from lubridate package to obtain the
month from a date
library(lubridate)
barplot(table(month(dates)))

1 2 3 4 5 6 7 8 9 10 11 12

0
2

4
6

8

We see that the observations are fairly evenly distributed accross the months of the year.

45

3 Change point analysis

In this section we will perform the analysis on the surface reflectance of the study period and study area
chosen in order to see if there is any evidence of a bleaching event. We will proceed as follows:

1. Build a historical pixelwise database of reflectance using previously loaded data.

2. Model the surface reflectance of each pixel as a function of the time of year and the tidal cycles. Use
forward selection to choose the relevant seasonal and tidal factors.

3. Using surface reflectance model apply change point analysis independently to each pixel to determine
the most likely date of a change occurring at the site of each pixel.

4. Determine the most likely date of bleaching event affecting the entire study area.

5. Produce a map of likely bleached areas within study area.

We have 74 dates of reflectance information for our study area. We’ll first visualize this information in the
format that makes most sense: as a RGB video. We use the imager package because its cimg class allows for
four dimensions - two space dimensions, a time dimension and a spectral band dimension - and because it
provides useful plotting and processing methods for this class.
Load imager library and transform top-of-atmosphere
reflectance array into cimg
library(imager)
we only use the RGB bands
sceneRGB.cimg <- cimg(aperm(scene_TOAR.ar[, , c(4, 3, 2),],

c(1, 2, 4, 3)))
dim(sceneRGB.cimg)

[1] 185 172 74 3

depth(sceneRGB.cimg) # the depth is the time dimension

[1] 74

We make a video using 74 date observations and play it. You need to have ffmpeg on your path for this to
work. You may skip this part as it only serves to play video.
filename and route where we want to save
f <- "../Rmd/sceneRGB.mp4"
make and save the vido with save.video
save.video(sceneRGB.cimg, f, fps = 2)
play(load.video(f), delay = 500, loop = T)

46

Figure 22: Animation of study area accross study period

We now reshape the reflectance and quality arrays into a single database with long format which will allow us
to isolate the information of specific pixels and pixel-types (eg. shallow reef pixels, cloudy pixels). we use the
melt function from the reshape package to do this.
Load reshape package
library(reshape)
Make top-of-atmosphere and surface reflectance databases
scene_TOAR.df <- apply(scene_TOAR.ar, "var", melt)
scene_TOAR.df <- cbind(scene_TOAR.df[[1]][, c("x", "y", "date")],

do.call(cbind, lapply(scene_TOAR.df, function(df) df[, 4])))
scene_SR.df <- apply(scene_SR.ar, "var", melt)
scene_SR.df <- cbind(scene_SR.df[[1]][, c("x", "y", "date")],

do.call(cbind, lapply(scene_SR.df, function(df) df[, 4])))

47

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Make BQA quality and pixel_qa quality band databases
QA_TOAR.df <- apply(QA_TOAR.ar, "var", melt)
QA_TOAR.df <- cbind(QA_TOAR.df[[1]][, c("x", "y", "date")], do.call(cbind,

lapply(QA_TOAR.df, function(df) df[, 4])))
cloudQA_SR.df <- apply(cloudQA_SR.ar, "var", melt)
cloudQA_SR.df <- cbind(cloudQA_SR.df[[1]][, c("x", "y", "date")],

do.call(cbind, lapply(cloudQA_SR.df, function(df) df[, 4])))

Make an fmask database
fmask.df <- apply(fmask.ar, "var", melt)
fmask.df <- cbind(fmask.df[[1]][, c("x", "y", "date")], do.call(cbind,

lapply(fmask.df, function(df) df[, 4])))

Make a general database by binding columns and remove
individual databases
scene.df <- cbind(scene_TOAR.df, scene_SR.df[, 4:ncol(scene_SR.df)],

QA_TOAR.df[, 4:ncol(QA_TOAR.df)], cloudQA_SR.df[, 4:ncol(cloudQA_SR.df)],
fmask_class = fmask.df$fmask_class)

colnames(scene.df)[4:(4 + 6)] <- paste("toar", colnames(scene.df)[4:(4 +
6)], sep = ".")

colnames(scene.df)[(4 + 7):(4 + 7 + 6)] <- paste("sr", colnames(scene.df)[(4 +
7):(4 + 7 + 6)], sep = ".")

remove(QA_TOAR.df)
remove(cloudQA_SR.df)
remove(fmask.df)

Make a coral-reef database by using the coral.r stack we
made earlier by rasterizing maldives shape file
coral.df <- as.data.frame(coral.r, xy = T)

Add this to general database by merging with respect to
coordinates
scene.df <- merge(scene.df, coral.df, by = c("x", "y"), sort = F)
make coralType variable easier to read by numbers to labels
(rasters can't handle strings but data.frames can!)
scene.df$coralType <- c("deep_reef", "shallow_reef", "variable_depth_reef")[scene.df$coralType]
scene.df$coralType[which(is.na(scene.df$coralType))] <- "non-reef"
Add pixel, pixel-row, pixel-column, year, month and day
variables
scene.df$pixel <- cellFromXY(scene_TOAR.r, scene.df[, c("x",

"y")])
scene.df$row <- rowFromCell(scene_TOAR.r, scene.df$pixel)
scene.df$col <- colFromCell(scene_TOAR.r, scene.df$pixel)
scene.df$date <- as.Date(scene.df$date)
scene.df$year <- year(scene.df$date)
scene.df$month <- month(scene.df$date)
scene.df$day <- as.POSIXlt(scene.df$date)$yday + 1

add scenewise variables (satellite-sensor, tier, collection
number-category and acquisition time) by matching data base
date to scene dates
indx <- match(scene.df$date, dates)
scene.df$satSens <- satSens[indx]

48

scene.df$procLevel <- procLevel[indx]
scene.df$colCat <- colCat[indx]
scene.df$time <- TIME[indx]
library(pander) # pander
pander(head(scene.df), caption='General database format')

Lets see how many observations are affected by cloud shadow (fmask=2), snow (fmask=3), clouds (fmask=4)
or radiometric saturation.
pander(table(scene.df$fmask_class %in% c(2, 3, 4))/nrow(scene.df) *

100, caption = "% of cloud/snow/shadow pixels")

Table 7: % of cloud/snow/shadow pixels

FALSE TRUE
35.45 64.55

pander(table(scene.df$Radiometric.Saturation > 0)/nrow(scene.df) *
100, caption = "% of radiometric saturated pixels")

Table 8: % of radiometric saturated pixels

FALSE
100

We know create a variable indicating whether we can use a particular observation or not.
scene.df$filter <- 0
scene.df$filter[which(scene.df$fmask_class %in% c(2, 3, 4) |

scene.df$Radiometric.Saturation > 0)] <- 1
pander(table(scene.df$filter)/nrow(scene.df) * 100, caption = "% usable pixel observations")

Table 9: % usable pixel observations

0 1
35.45 64.55

We want to display the reflectance of a few pixels accross time in order to get a feel for its behavior. We first
sample a few shallow-reef and non-reef (water) pixels.
identify shallow-reef pixels
pixels.shallow <- which(values(coral.r[["coralType"]]) == 2 &

values(coral.r[["distanceWater"]]) > 120)
identify non-reef pixels
pixels.water <- which(is.na(values(coral.r[["coralType"]])))

num.smpl <- 16
set.seed(8)
Sample 16 shallow-reef and 16 non-reef pixels
smpl.shallow <- sample(pixels.shallow, num.smpl)
smpl.water <- sample(pixels.water, num.smpl)

49

smpl <- c(smpl.shallow, smpl.water)

We plot the surface reflectance of the ultra-blue band for the 16 sampled shallow-reef pixels. We do not filter
out cloudy pixels but they are identified in plot.
library(ggplot2)
B1 - Ultra blue, shallow-reef, UNfiltered
p <- ggplot(scene.df[which(scene.df$pixel %in% smpl & scene.df$coralType ==

"shallow_reef"),])
p <- p + geom_point(aes(x = day, y = sr.B1, shape = as.factor(filter),

colour = as.factor(year)), alpha = 0.3)
p <- p + facet_wrap(~pixel, ncol = 4, labeller = as_labeller(labels))
p <- p + xlab("day of the year") + ylab("band") + scale_colour_discrete(name = "year")
p

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

0

4000

8000

12000

0

4000

8000

12000

0

4000

8000

12000

0

4000

8000

12000

day of the year

ba
nd

year

2013

2014

2015

2016

2017

as.factor(filter)

0

1

As we can see cloudy pixels produce very high reflectance values which distort the scale of the plot and do
not allow us to observe the surface reflectance behavior of the pixels. Lets filter out these cloudy pixels.
take out all cloud and radiometric saturation data points
scene.df <- scene.df[which(scene.df$filter == 0),]

We repeat plot having filtered out cloudy pixels.
B1 - Ultra blue, shallow-reef, filtered
p <- ggplot(scene.df[which(scene.df$pixel %in% smpl & scene.df$coralType ==

"shallow_reef"),])
p <- p + geom_point(aes(x = day, y = sr.B1, colour = as.factor(year)),

alpha = 0.3)

50

p <- p + facet_wrap(~pixel, ncol = 4, labeller = as_labeller(labels))
p <- p + xlab("day of the year") + ylab("band") + scale_colour_discrete(name = "year")
p

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

day of the year

ba
nd

year

2013

2014

2015

2016

2017

We can see, especially for certain pixels such as pixel 14, reflectance displays yearly seasonality. We now plot
the surface reflectance of the green band for the 16 sampled non-reef pixels.
B3 - Green, non-reef, filtered
p <- ggplot(scene.df[which(scene.df$pixel %in% smpl & scene.df$coralType ==

"non-reef"),])
p <- p + geom_point(aes(x = day, y = sr.B3, colour = as.factor(year)),

alpha = 0.3)
p <- p + facet_wrap(~pixel, ncol = 4, labeller = as_labeller(labels))
p <- p + xlab("day of the year") + ylab("band") + scale_colour_discrete(name = "year")
p

51

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

day of the year

ba
nd

year

2013

2014

2015

2016

2017

3.1 Pixelwise fourier model

We have already seen that the surface reflectance displays yearly seasonality. We know that since the areas
captured have relatively shallow water, tide will be changing and will affect the reflectance recorded. Tide
depends mainly on fourier components of the type a ∗ sin(2πh

P) where P is the period of the tide cycle and h
the hours passed within that cycle. We will fit following model to the ultra-blue band surface reflectance of
each pixel:

r = g(d, h) + ε = α0 + α1 cos
(2πd
T

)
+ β1 sin

(2πd
T

)
+ α2 cos

(2πd
0.5T

)
+ β2 sin

(2πd
0.5T

)
N∑
i=1

+αi+2 cos
(2πhi
Pi

)
+ βi+2 sin

(2πhi
Pi

)
+ ε (1)

Where:

• r is ultra-blue surface reflectance,

• d ∈ {1, 2, ..., 366} is the day of the year,

• hi ∈ [0, Pi] is the hours that have passed in tide cycle i ∈ {1, ..., N}

• T is the number of days in the year, taken to be 366,

• Pi is the length in hours of tide cycle i

52

• Coefficients α1 and β1 represent variation that occurs yearly cycles ,

• Coefficients α2 and β2 capture bimodal variations,

• Coefficients αj and βj for j > 2 represent variation due to tidal forces,

• Coefficient α0 represents mean overall surface reflectance, and

• ε is the error term.

We chose the ultra-blue band to try to detect model bleaching because in Yamano and Tamura (2004) it was
found that the lower wavelength bands were best for detecting bleaching according to their simulation model.

The main tide components have the following periods (see https://www.r-bloggers.com/predicting-tides-in-r/):

Name Period(hours) relative strength %
Main lunar, semi diurnal 12.42 100.0
Lunar-solar, diurnal 23.93 58.4
Main solar, semi-diurnal 12.00 46.6
Main lunar, diurnal 25.82 41.5
Main solar, diurnal 24.07 19.4
Lunar elliptic, semi-diurnal 12.66 19.2
lunar-solar, semi-diurnal 11.97 12.7
———————————- —————— ————————-

We will use these seven components (i ∈ {1, ..., N = 7}) for fourier model 1.

We start by building an absolute hour h variable which will count the hours passed since 2013-01-01 00:00:00.
We can then calculate the different hi variables by dividing by the respective period Pi and taking the
remainder:

hi = h

Pi
−
⌊
h

Pi

⌋
(2)

We set the periods we are interested in
tidePeriods <- c(12.42, 23.93, 12, 25.82, 24.07, 12.66, 11.97)

We first calculate the absolute hour, counting from
2013-01-01 00:00:00 base-line
class(scene.df$time)

[1] "POSIXlt" "POSIXt"

dts <- as.POSIXct(scene.df$time)
head(dts)

[1] "2013-05-22 00:21:28 CEST" "2017-03-29 23:19:01 CEST"
[3] "2016-03-26 23:19:09 CET" "2016-08-18 00:19:32 CEST"
[5] "2014-07-12 00:19:18 CEST" "2017-03-13 23:19:10 CET"

attributes(dts)

$class
[1] "POSIXct" "POSIXt"
##
$tzone
[1] ""

53

https://www.r-bloggers.com/predicting-tides-in-r/

change the time zone of the date to a single time
attributes(dts)$tzone <- "GMT"
head(dts)

[1] "2013-05-21 22:21:28 GMT" "2017-03-29 21:19:01 GMT"
[3] "2016-03-26 22:19:09 GMT" "2016-08-17 22:19:32 GMT"
[5] "2014-07-11 22:19:18 GMT" "2017-03-13 22:19:10 GMT"

isolate the time of day
tms <- format(dts, format = "%H:%M:%S")
tms <- as.numeric(substr(tms, 1, 2)) + as.numeric(substr(tms,

4, 5))/60 + as.numeric(substr(tms, 4, 5))/3600
summary(tms)

Min. 1st Qu. Median Mean 3rd Qu. Max.
21.32 22.32 22.32 22.29 22.32 22.36

scene.df$time_hour <- tms

transform to a hours since 2013-01-01 00:00:00
origin <- as.POSIXct("2013-01-01 01:00:00")
attributes(origin)$tzone <- "GMT"
dys <- dts - origin
hrs <- as.numeric(dys) * 24
scene.df$daysAbs <- dys
scene.df$hoursAbs <- hrs

We will now check that there is enough variance in the observations with respect to the tide cycles. We would
like all tide cycles to have observations accross it.
See if we have enough variance - do we have observations
spread out accross the relevant tide cycles
distPeriod <- lapply(tidePeriods, function(f) (scene.df$hoursAbs%%f))
par(mfrow = c(3, 3))
ap <- lapply(1:length(tidePeriods), function(i) hist(distPeriod[[i]],

100, xlab = "hours", xlim = c(0, tidePeriods[i]), main = paste("dist. of obs. in ",
tidePeriods[i], " hour cycle")))

54

dist. of obs. in 12.42 hour cycle

hours

F
re

qu
en

cy

0 2 4 6 8 10

0
dist. of obs. in 23.93 hour cycle

hours

F
re

qu
en

cy

0 5 10 15 20

0

dist. of obs. in 12 hour cycle

hours

F
re

qu
en

cy

0 2 4 6 8 10

0e
+

00

dist. of obs. in 25.82 hour cycle

hours

F
re

qu
en

cy

0 5 10 15 20 25

0

dist. of obs. in 24.07 hour cycle

hours

F
re

qu
en

cy

0 5 10 15 20 25
0

dist. of obs. in 12.66 hour cycle

hours

F
re

qu
en

cy

0 2 4 6 8 10

0

dist. of obs. in 11.97 hour cycle

hours

F
re

qu
en

cy

0 2 4 6 8 10

0

As we may have expected there is hardly any variance in observations for the 12 hour cycle. This is because
landsat has a sun-synchronous orbit meaning that it captures the scene at the same time of day. We have no
variance with respect to this tide cycle so we may exclude it as factor affecting surface reflectance.
Exclude 12 hour tide cycle period
tidePeriods <- tidePeriods[-3]

We now define a function that will build all the fourier components which depend on the day of the year d,
the absolute hour h and the periods Pi of the relevant tide cycles.
makeModelMat <- function(days, hours, tidePeriods) {

year cycles
T <- 365
create the anual and bianual cycle fourier components
modMat <- data.frame(cosAnual = cos((days * 2 * pi)/(T)),

sinAnual = sin((days * 2 * pi)/(T)), cosBianual = cos((days *
2 * pi)/(0.5 * T)), sinBianual = sin((days * 2 *
pi)/(0.5 * T)))

create tidal cycle fourier components using modulus
operator (%%)
aux <- sapply(tidePeriods, function(f) sin(2 * pi * (hours%%f)/f))
colnames(aux) <- paste("sin_tide", tidePeriods, sep = "_")
modMat <- cbind(modMat, aux)
aux <- sapply(tidePeriods, function(f) cos(2 * pi * (hours%%f)/f))
colnames(aux) <- paste("cos_tide", tidePeriods, sep = "_")
modMat <- cbind(modMat, aux)

return(modMat)

55

}

We now fit the linear regression model 1 for one pixel. We refer to seasonal predictors as those fourier terms
depending on the day of the year and to tidal predictors as those depending on the hour of a tidal cycle.
obtain data for pixel smpl[2]
datPix <- scene.df[which(scene.df$pixel == smpl[2]),]
dim(datPix)

[1] 26 52

calculate predictors and add to response variable
(ultra-blue surface reflectance-sr.B1)
modMat <- cbind(datPix[, c("sr.B1", "date")], makeModelMat(datPix$day,

datPix$hoursAbs, tidePeriods))
create formula: sr.B1 ~ seasonal predictors + tidal
predictors
nms <- colnames(modMat)
refl <- nms[1]
seasonalPreds <- nms[3:6]
tidalPreds <- nms[7:ncol(modMat)]
preds <- nms[3:ncol(modMat)]
form <- as.formula(paste(refl, paste(preds, collapse = "+"),

sep = "~"))
fit model
fit <- lm(form, modMat)
pander(summary(fit)$coefficients, caption = paste("Summary of full model for pixel ",

smpl[2]))

Table 11: Summary of full model for pixel 7368

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2209 77.08 28.66 3.734e-10
cosAnual 551.3 1313 0.4198 0.6845
sinAnual -198 1218 -0.1626 0.8744
cosBianual -408.3 287.2 -1.421 0.1889
sinBianual 599.3 633.3 0.9463 0.3687

sin_tide_12.42 600.1 1419 0.4228 0.6824
sin_tide_23.93 795.5 4294 0.1853 0.8571
sin_tide_25.82 193 122.9 1.57 0.1508
sin_tide_24.07 7684 10602 0.7248 0.487
sin_tide_12.66 59.4 151.3 0.3925 0.7038
sin_tide_11.97 -1155 1522 -0.7589 0.4673
cos_tide_12.42 -1461 1638 -0.8919 0.3957
cos_tide_23.93 9223 17474 0.5278 0.6104
cos_tide_25.82 -186.9 127.3 -1.468 0.1762
cos_tide_24.07 -6440 16511 -0.39 0.7056
cos_tide_12.66 -47.62 119 -0.4001 0.6984
cos_tide_11.97 1119 943.4 1.186 0.2658

As we can see non of the predictors are significant. This is because we are overfitting considering we have
18 predictors and only 26 data points. We now apply stepwise selection using the Akaike Information
Criterion (AIC) which balances model fit as measured by the log-likelihood by penalizing it with the number
of predictors.

56

library(MASS)
apply stepwise selection based on AIC
step <- stepAIC(fit, direction = "both", trace = F)
pander(summary(step)$coefficients, caption = paste("Summary of reduced model for pixel ",

smpl[2]))

Table 12: Summary of reduced model for pixel 7368

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2214 60.64 36.51 1.74e-14
cosAnual 460.3 344.7 1.335 0.2047
cosBianual -386.6 179.7 -2.151 0.05086
sinBianual 804 201 4 0.001513

sin_tide_23.93 1565 931.7 1.68 0.1168
sin_tide_25.82 190.9 103.5 1.843 0.08821
sin_tide_24.07 6799 2590 2.625 0.02099
sin_tide_11.97 -1644 552.2 -2.977 0.0107
cos_tide_12.42 -1908 733.5 -2.602 0.02192
cos_tide_23.93 7241 3408 2.125 0.05338
cos_tide_25.82 -159.2 93.88 -1.696 0.1137
cos_tide_24.07 -4284 2728 -1.57 0.1404
cos_tide_11.97 740.9 227.9 3.251 0.006315

The stepwise selection reduced the number of predictors from 16 to 11 and now all predictors are statistically
significant. We would like to carry out this model fit and selection for all pixels. However there are 31,815
pixels in our chosen study area so in the next section we will look to simplify the selection process.

3.2 Forward selection

For each pixel we will use the following steps to select a model:

• Fit the null model: r = α0 + ε,

• Use forward selection to add one seasonal predictor, and,

• Use forward selection to add two predictors (seasonal or tidal).

The idea is to make sure at least one seasonal predictor enters the model of each pixel and two other predictors
according to the AIC criterion.
Fit a null model
fitNull <- lm("sr.B1~1", modMat)
fit <- fitNull
Define scope of model: those variables elligible for
selection. In this case seasonal predictors.
scope <- as.formula(paste("~ ", paste(seasonalPreds, collapse = "+"),

sep = ""))
Obtain AIC scores of single term additions to null model
pander(test <- add1(fit, scope), caption = "AIC for single term additions to null model")

Table 13: AIC for single term additions to null model

Df Sum of Sq RSS AIC
NA NA 3032019 305.3

57

Df Sum of Sq RSS AIC
cosAnual 1 91628 2940392 306.5
sinAnual 1 87264 2944755 306.6
cosBianual 1 627006 2405013 301.3
sinBianual 1 536526 2495493 302.3

We see that the cosine bianual term obtains the biggest decrease in AIC. We add it to the model:
obtain string of best seasonal predictor
newVar <- rownames(test)[which.min(test$AIC[2:length(test$AIC)]) +

1]
add best seasonal predictor to model
fit <- update(fit, as.formula(paste("~ . + ", newVar, sep = "")))
pander(summary(fit), caption = "Null model + 1 seasonal predictor")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2312 62.15 37.2 9.782e-23
cosBianual -201.1 80.41 -2.501 0.01959

Table 15: Null model + 1 seasonal predictor

Observations Residual Std. Error R2 Adjusted R2

26 316.6 0.2068 0.1737

We’ll now add two terms from the full scope of predictors (excluding term already added).
Define scope of model: those variables elligible for
selection. In this case all predictors.
scope <- as.formula(paste("~ ", paste(preds, collapse = "+"),

sep = ""))
Obtain AIC scores of single term additions to null model +
cosBianual
test <- add1(fit, scope)
obtain string of best predictor
(newVar <- rownames(test)[which.min(test$AIC[2:length(test$AIC)]) +

1])

[1] "sinBianual"

add best seasonal predictor to model
fit <- update(fit, as.formula(paste("~ . + ", newVar, sep = "")))
Repeat once more
test <- add1(fit, scope)
(newVar <- rownames(test)[which.min(test$AIC[2:length(test$AIC)]) +

1])

[1] "sin_tide_12.66"

fit <- update(fit, as.formula(paste("~ . + ", newVar, sep = "")))
pander(summary(fit), caption = "Final model with 3 predictors")

58

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2293 52.87 43.37 8.353e-23
cosBianual -199.8 68.13 -2.933 0.007707
sinBianual 217.2 83.15 2.612 0.01593

sin_tide_12.66 163.6 74.67 2.19 0.03938

Table 17: Final model with 3 predictors

Observations Residual Std. Error R2 Adjusted R2

26 267.6 0.4802 0.4093

We now write a function that implements this procedure so that we can apply this to all pixels.
addN <- function(fitNull, seasonalPreds, preds, N) {

scope <- as.formula(paste("~", paste(seasonalPreds, collapse = "+"),
sep = ""))

fit <- fitNull
test <- add1(fit, scope)
(newVar <- rownames(test)[which.min(test$AIC[2:length(test$AIC)]) +

1])
fit <- update(fit, as.formula(paste("~ . + ", newVar, sep = "")))
scope <- as.formula(paste("~", paste(preds, collapse = "+"),

sep = ""))

for (i in 1:(N - 1)) {
test <- add1(fit, scope)
rnms <- rownames(test)[2:length(rownames(test))]
newVar <- rnms[which.min(test$AIC[2:length(test$AIC)])]
fit <- update(fit, as.formula(paste("~ . + ", newVar,

sep = "")))
}

return(fit)
}

pander(summary(addN(fitNull, seasonalPreds, preds, 3)), caption = "Final model with 3 predictors")

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2293 52.87 43.37 8.353e-23
cosBianual -199.8 68.13 -2.933 0.007707
sinBianual 217.2 83.15 2.612 0.01593

sin_tide_12.66 163.6 74.67 2.19 0.03938

Table 19: Final model with 3 predictors

Observations Residual Std. Error R2 Adjusted R2

26 267.6 0.4802 0.4093

59

We want to apply forward selection to all pixels so long as they have enough data.
vector with all pixels
pixels <- scene.df$pixel
length(unique(pixels)) #there are 31,815 pixels

[1] 31815

table(table(pixels)) #pixels have anywhere from 1 to 35 observations

##
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
422 422 273 148 61 40 38 51 39 36 45 51 89 77 76
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
84 120 165 215 174 230 429 865 1416 2276 3299 4278 4678 4195 3354
31 32 33 34 35
2288 1196 474 157 54

cumsum(rev(table(table(pixels))))/length(unique(pixels)) * 100

35 34 33 32 31 30
0.1697313 0.6632092 2.1530725 5.9123055 13.1038818 23.6460789
29 28 27 26 25 24
36.8316832 51.5354393 64.9819268 75.3512494 82.5051077 86.9558384
23 22 21 20 19 18
89.6746818 91.0231023 91.7460317 92.2929436 92.9687254 93.4873487
17 16 15 14 13 12
93.8645293 94.1285557 94.3674367 94.6094609 94.8892032 95.0495050
11 10 9 8 7 6
95.1909477 95.3041018 95.4266855 95.5869873 95.7064278 95.8321546
5 4 3 2 1
96.0238881 96.4890775 97.3471633 98.6735816 100.0000000

Pixels with 20+ obs make up 92% of the pixels we obtain a
vector of pixels and their type
(shallow-reef/non-reef/variable depth reef)
pixels <- unique(pixels)
types <- scene.df$coralType[match(pixels, scene.df$pixel)]

As we can see if we define enough data for a pixel as it having at least 20 observations we will be able to
fit models to 92% of the pixels. We will use this criterion and now apply the forward selection procedure.
Ultimately, we are not interested in the model fits themselves but the variables selected for each pixel. This
is because in section 3.3 we will re-fit the model to subsets (sub-periods) of the data for each pixel in order to
determine if and when an intervention changed the pattern of surface reflectance (potential bleaching event).
we initialize a list where we keep selected variables for
each pixel
vars <- list()
loop through vector of pixels
for (pix in pixels) {

keep track of progress
count <- which(pix == pixels)
if (count%%100 == 0)

print(count/length(pixels) * 100)

obtain data for pixel 'pix'
datPix <- scene.df[which(scene.df$pixel == pix),]

60

aux <- ""

if we have enough data we appy forward selection
if (nrow(datPix) >= 20) {

plot(datPix$date, datPix$sr.B1)
modMat <- cbind(datPix[, c("sr.B1", "date")], makeModelMat(datPix$day,

datPix$hoursAbs, tidePeriods))
fitNull <- lm("sr.B1~1", modMat)
fit <- addN(fitNull, seasonalPreds, preds, N = 3)
aux <- names(coef(fit))[2:length(coef(fit))]

}

record selected variables
vars[[length(vars) + 1]] <- aux

}

Lets take a look at the percentage of pixels which selected each predictor. We look at it by coral type.
% that predictors were added for each type of coral
predPcts <- sapply(unique(types), function(typ) {

indx <- which(types == typ)
pixs <- pixels[indx]
vs <- vars[indx]
table(unlist(vs))/length(pixs) * 100

})
rownames(predPcts)[1] <- "insuf. data"
predPcts <- cbind(predPcts, mean = apply(predPcts, 1, mean))
predPcts <- predPcts[order(predPcts[, "mean"], decreasing = T),

]
pander(predPcts, caption = "% of pixels selecting each predictor")

Table 20: % of pixels selecting each predictor

non-reef shallow_reef variable_depth_reef mean
cosAnual 70.98 34.37 74.89 60.08
sinAnual 51.03 25.13 42.75 39.64
cosBianual 23.15 37.58 31.85 30.86

sin_tide_11.97 28.8 15.13 22.96 22.29
sinBianual 22.86 22.04 14.78 19.89

cos_tide_12.66 17.39 10.14 19.23 15.59
cos_tide_23.93 15.47 10.57 15.64 13.89
sin_tide_25.82 16.13 9.768 13.49 13.13
sin_tide_12.66 3.127 25.74 7.461 12.11
sin_tide_12.42 12.33 9.145 8.465 9.982
sin_tide_23.93 8.801 5.854 13.2 9.285
insuf. data 3.388 19.51 3.73 8.877

cos_tide_24.07 7.041 7.617 8.608 7.755
cos_tide_25.82 4.75 9.028 4.878 6.219
sin_tide_24.07 3.786 7.288 3.3 4.791
cos_tide_12.42 1.893 7.805 4.304 4.667
cos_tide_11.97 2.282 4.244 3.013 3.18

61

We now delete from relevant vectors and lists entries corresponding to pixels without sufficient data.
obtain indices of pixels with sufficient data
indx <- which(!sapply(vars, function(v) all(v == "")))
delete entries of pixels with insufficient data
pixels <- pixels[indx]
types <- types[indx]
vars <- vars[indx]
names(vars) <- pixels

We have established a procedure for model fitting and selection for all pixels and have determined which
predictors we wish to use in the fourier model 1 for each pixel. In the next section we will use this to establish
the likliest date of a change in model coefficients indicating a possible intervention. If this occurs at similar
dates for most pixels then we are dealing with an intervention affecting the entire 5.35km2 area, possibly a
bleaching event.

3.3 Seemingly Unrelated Regression

3.3.1 Theory

Model 1 can be rewritten in vector form in the following way:

yi = βTxi + εi (3)

Where:

• y is ultra-blue surface reflectance time series for a given pixel,

• β = (α0α1β1, ..., α8, β8)T ,

• x := x(d, h1, P1, ..., h8, P8) = (cos(2πd
T) sin(2πd

T) cos(2πd
T) sin(2πd

T))T ,

• ε is the random error term which we assume satisfies usual assumptions of linear model:

1. unbiased: zero mean,

2. homogenous: contant variance,

3. independent identically distributed, and

4. normally distributed.

• i indicates the observation number (associated to a date)

If we have n observations we can write model 3 in matrix form:

Y = Xβ + ε (4)

Where:

• Y ∈ Rn×1,

• β ∈ Rp×1,

• X ∈ Rn×p, and

• ε ∈ Rn×1

62

If the assumptions for the errors hold and we can carry out a hypothersis test of the form:

H0 : Cβ = d

Ha : Cβ 6= d (5)

where C ∈ Rq×p, rank(C) = q, by calculating the F test statistic:

β̂ = (XTX)−1XTY

Ŷ = Xβ̂

r = Y − Ŷ

σ̂2 = (rT r)
n− p

F = (Cβ̂ − d)T (C(XTX)−1CT)−1(Cβ̂ − d)
qσ̂2 (6)

which we know is distributed Fq,n−p if the null hypothesis is true. We reject the null hypothesis if the test
statistic, at significance level α, is larger than P−1

Fq,n−p
(1− α) where PFq,n−p

is the cumulative distribution
function of an F-distributed random variable with q, n− p degrees of freedom.

The Seemingly Unrelated Regression (SUR) model uses a generalized linear hypothesis with respect to an
augmented regression model to test the following hypothesis:

H0 : β1 = β2

Ha : β1 6= β2 (7)

Where β1 is the regression coefficient that applies to subset 1 of the datapoints and β2 is the regression
coefficient that applies to subset 2 of the data points.

To do this we carry out the following steps:

1. Choose two subsets, S1 and S2, of the data points which we wish to compare,

2. Augment model 3 to following model:

yi = βT1 wi + βT2 zi + εi

wi =
{
xi, i ∈ S1

0, i ∈ S2
(8)

zi =
{

0, i ∈ S1

xi, i ∈ S2
(9)

We can then express hypothesis 7 in the form of hypothesis 5 by carrying out following steps:

a. Use d = 0 and the following matrix C ∈ Rp×2p:

C =


1 0 . . . 0 −1 0 . . . 0
0 1 . . . 0 0 −1 . . . 0
...

...
...

...
0 0 . . . 1 0 0 . . . −1

 (10)

such that Cβ = d corresponds to β1 = β2.

63

b. Form new matrix X:

X =
(
X1 0
0 X2

)
(11)

c. Calculate F statistic and reject null hypothesis if F > P−1
Fq,n−p

(1− α)

3.3.2 Application to change point analysis

To apply the SUR model to change point analysis we simply define the two subsets of observations with
respect to a change date: those that occurred before or on the date and those that occurred after. We now
define a function to carry out the hypothesis test and try it out for one pixel and one change date.
obtain model-matrix and response variable for ALL pixels
modMat <- cbind(scene.df[, c("sr.B1", "date", "pixel")], makeModelMat(scene.df$day,

scene.df$hoursAbs, tidePeriods))

we define a function that performs SUR hypothesis test.
function takes pixel and change date so as to define two
subsets of informations and model matrix and the predictors
(vars) which were selected and will be used to fit the
model of each pixel.
hypPixDate <- function(pix, chng.date, modMat, vars) {

obtain the model matrix and response variable for the
chosen pixel
modMatPix <- modMat[which(modMat$pixel == pix),]
define the model matrix for both subsets of observations
X1 <- as.matrix(modMatPix[which(modMatPix$date <= chng.date),

vars[[as.character(pix)]]])
X2 <- as.matrix(modMatPix[which(modMatPix$date > chng.date),

vars[[as.character(pix)]]])

intitialize pvalue
pval <- NA
we only carry out hypothesis test if there are at least 11
observations in both subsets
if (nrow(X1) > 10 & nrow(X2) > 10) {

we construct augmened model-matrix
X <- rbind(cbind(X1, matrix(0, nrow(X1), ncol(X2))),

cbind(matrix(0, nrow(X2), ncol(X1)), X2))
get response variable
Y <- modMatPix[, "sr.B1"]
total number of observations
n <- nrow(X)
total number of predcitors
p <- ncol(X1)

calcualte OLS estimator for beta
beta_h <- solve(t(X) %*% X) %*% t(X) %*% Y
calculate OLS estimator for response variable
Y_h <- X %*% beta_h
calculate residuals
res <- Y - Y_h
#

64

sigma_h <- sqrt(sum(res^2)/(n - 2 * p))
Construct C matrix which encodes our null hypothesis HO:
beta_0_1 = beta_0_2,....,beta_p_1=beta_p_2
C <- t(rbind(diag(1, p), diag(-1, p)))
Calculate F statistic
Fstat <- as.numeric((t(C %*% beta_h) %*% solve(C %*%

solve(t(X) %*% X) %*% t(C)) %*% (C %*% beta_h))/(p *
sigma_h^2))

Calculate p-value with respect F statistic and degrees of
freedom
(pval <- 1 - pf(Fstat, df1 = p, df2 = n - 2 * p))

}
return(pval)

}

Set a change date
chng.date <- as.Date("2016-03-01")

calculate the p-value for the no-change at '2016-03-01'
null hypothesis for pixel 51
indx.pix <- 51
pix <- pixels[indx.pix]
hypPixDate(pix, chng.date, modMat, vars)

[1] 0.5797709

In this case we would not reject null hypothesis at an α level of 10%. In the next section we apply hypothesis
to all pixels and all elligible change dates. We want to see if the reflectance pattern of most pixels changed at
a particular date providing evidence of a scene-wide intervention such as a bleaching event.

3.3.3 Results

We apply SUR hypothesis test to all pixels and with all elligible change dates. We first define elligible
change dates: observation dates such that there are at least nine observation dates prior to that date and 9
observations posterior to that date. We do this in order to allow enough observations in both subsets S1 and
S2.
minimum number of observation dates prior to and including
a change date, also minimum number of observation dates
posterior to and including a change date.
minDts <- 10
we define the elligible change dates
leftLimit <- sort(unique(scene.df$date))
leftLimit <- leftLimit[minDts:(length(leftLimit) - minDts)]
chng.dates <- leftLimit
length(chng.dates)

[1] 27

We now calculate the p-values for the hypotheses of all pixels with all elligible change dates used to define
both subsets.
pm <- proc.time()
pvals <- sapply(chng.dates, function(dt) sapply(pixels, function(px) {

65

if (px == pixels[1])
print(dt)

hypPixDate(px, dt, modMat, vars)
}))
proc.time() - pm

[1] 29363 27

We see that we have one p-value for every combination of pixel and elligible change date. In the next section
we’ll analyze the scene-wide p-value statistics by date in order to detect any dates at which the whole scene
was affected.

3.3.3.1 Plausible bleaching dates

We’ll plot the median scene-wide p-value by date and also the % of pixels for which there was sufficient data
to calculate their p-value. As before we’ll do this for the different coral-reef groups: shallow-reef, variable
depth-reef and non-reef.
We'll mark the observations corresponding to following date
on graph as reference
indx.dt <- 17
chng.dates[indx.dt]

[1] "2016-01-23"

par(mfcol = c(2, 3))
dumy <- lapply(unique(types), function(typ) {

indx.ty <- which(types == typ)

median p-value per date
plot(chng.dates, apply(pvals[indx.ty,], 2, median, na.rm = T),

main = paste("median ", typ), ylab = "p-value", xlab = "",
ylim = c(0.3, 0.9))

lines(chng.dates[indx.dt], apply(pvals[indx.ty,], 2, median,
na.rm = T)[indx.dt], type = "p", col = "red", cex = 2)

of pixels for which there is enough data for hypothesis
test at each date
plot(chng.dates, apply(pvals[indx.ty,], 2, function(p) sum(!is.na(p))/length(p)),

main = paste("% data", typ), ylab = "%", xlab = "", ylim = c(0,
1))

lines(chng.dates[indx.dt], apply(pvals[indx.ty,], 2, function(p) sum(!is.na(p))/length(p))[indx.dt],
type = "p", col = "red", cex = 2)

})

66

2015 2016

0.
3

0.
5

0.
7

0.
9

median non−reef
p−

va
lu

e

2015 2016

0.
0

0.
4

0.
8

% data non−reef

%

2015 2016

0.
3

0.
5

0.
7

0.
9

median shallow_reef

p−
va

lu
e

2015 2016

0.
0

0.
4

0.
8

% data shallow_reef

%

2015 2016

0.
3

0.
5

0.
7

0.
9

median variable_depth_reef

p−
va

lu
e

2015 2016

0.
0

0.
4

0.
8

% data variable_depth_reef

%
We see that towards the beginning of 2016 the median p-value significantly drops perhaps indicating that
something affected the reflectance pattern of most pixels in the scene. This could possibly be due to a
bleaching event. In the next section we’ll use the p-values for the 2016-03-01 observation date to plot a map
of p-values. If we interpret low p-values as potential bleaching sites we arrive at our first approximation of a
bleaching map for our study area.

3.3.3.2 Map of bleaching

We want to use the pixelwise p-values for 2016-03-01 change hypothesis as a proxy for potential bleaching
sites. However, right now our p-values are stored in a matrix where each row corresponds to a pixel and each
column to a change date. Additionally recall that we don’t have values for all pixels as around 8% did not
have enough data for us to fit a regression model. We first create a p-value raster stack from our p-value
matrix where each layer of the stack will correspond to a change date.
transfrom pvals into a data.frame so that we can add a
pixel id variable
pvals2 <- as.data.frame(pvals)
colnames(pvals2) <- chng.dates
pvals2$pixel <- pixels
pvals2$type <- types
create a data.frame with the study area raster grid
coordinates this is where we'll add the p-values since it
contains all pixels wether they have p-value info or not
coral.Info.df <- as.data.frame(coordinates(coral.r))
obtain pixel id variable associated to each raster cell
coral.Info.df$pixel <- cellFromXY(coral.r, coral.Info.df)
identify those pixels that don't have at least 20 data
points
coral.Info.df$info <- 0

67

coral.Info.df$info[which(coral.Info.df$pixel %in% pixels)] <- 1
merge p-values with pixel database using pixel id to match
coral.Info.df <- merge(coral.Info.df, pvals2, by = "pixel", all.x = T)
transform pixel database into a raster stack
coral.Info.r <- rasterFromXYZ(coral.Info.df[, -1], crs = CRS(projection(coral.r)))

Warning in matrix(as.numeric(xyz), ncol = ncol(xyz), nrow = nrow(xyz)): NAs
introduced by coercion

create a potential bleaching map with coral type layer,
available info layer and our chosen 'likely' change date.
bleach.r <- stack(coral.r[["coralType"]], coral.Info.r[[c("info",

"X2016.01.23")]])

We are now ready to plot our potential bleaching raster.
plot(bleach.r[["X2016.01.23"]], axes = F, box = F)
plot(maldives.shp, add = T)

0.2

0.4

0.6

0.8

As we can see our map has some holes due to pixels with insufficient data: either they didn’t have at least 20
observations or they didn’t have 9 observations before 2016-01-23 and after. Additionally, although we can
clearly appreciate a spatial pattern there is some noise to it since the color doesn’t change smoothly from
pixel to pixel. In the next section we will fill the holes in the map using an interpolation technique, and we
will smooth the map using convolutions in order to produce a more easily interpretable map of potential
bleaching regions.

4 Post-processing

4.1 Interpolation

This subsection (subsection 4.1) is largely based on section 8.4 from Bivand, Pebesma, and Gómez-Rubio
(2013). In this section we fill the holes in the map by interpolating in such a way that is consistent with the
pattern observable in the non-missing pixels.

68

4.1.1 Model

We assume the p-values in the 5.35km2 area can be modeled according to:

P (s) = m+ e(s) (12)

where

• e(s) ∼ N(0, σ2)

P-values are in (0, 1) interval so modeling them with normal variables is not recommended, however for
simplicity we won’t perform transformations on the p-values before interpolation. In standard statistical
problems, correlation can be estimated from a scatterplot, when several data pairs x, y are available. The
spatial correlation between two observations of variable p(s) at locations s1 and s2 cannot be estimated, as
only a single pair is available. To estimate spatial correlation from observational data, we therefore need to
make stationarity assumptions before we can make any progress. One commonly used form of stationarity is
intrinsic stationarity, which assumes that the spatial correlation between random variables P (s1) and P (s2)
does not depend on locations s1 and s2, but only on separation vector h = s1 − s2. Under this assumption
we only need to estimate the parameter σ2 and the correlation function ρ(h) := Corr(P (s), P (s+ h)) to fully
specify the joint distribution of P (s) variables. We can then form multiple pairs p(si), p(sj) that have (nearly)
identical separation vectors h = si???sj and estimate correlation from them. If we further assume isotropy,
which is direction independence of correlation, we can replace the vector h with its length, l = ||h||. Lets
get an idea of the behavior of the correlation function ρ(l) by plotting scatterplots by pairing observations
according to the distance between them.
we first form a SpatialPointsDataFrame with the p-values
for potential bleaching date 2016-01-23 and their
coordinate. We will need this to plot correlations and
later to fit interpolation model

model.df <- coral.Info.df[, c("pixel", "x", "y", "type", "2016-01-23")]
model.df <- na.omit(model.df)
colnames(model.df) <- c("pixel", "x", "y", "type", "pval")
lets see if there is any noticable difference in p-values
by coral-reef type that may justify replacing the model
P(s) = m + e(s) which has a general mean plus a noise term
with P(s) = m + t(s) + e(s) where t(s) is a term that
depends on the coral-reef type at location s
aggregate(model.df$pval, by = list(model.df$type), FUN = mean)

Group.1 x
1 non-reef 0.4612899
2 shallow_reef 0.4698005
3 variable_depth_reef 0.4427532

there doesn't seem to be much difference so we stick with
P(s) = m + e(s) model

transform into a spatial points data frame so we can plot
spatial correlations with hscat and estimate sample
variogram with variogram
coordinates(model.df) <- c("x", "y")
projection(model.df) <- projection(bleach.r)

Before plotting correlations we need to establish distance intervals with respect to which we will form data
pairs. We first get an idea of the distance distribution of the data pairs. There are

69

(
26, 678

2

)
= 355, 871, 181 (13)

data pairs so we will take a random sample of 100 points so that we only have to calculate distances for 4950
data pairs.
dists <- as.numeric(gDistance(model.df[sample(1:nrow(model.df),100),], byid=T))
summary(dists)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1847 3032 2967 4049 7106

hist(dists, 100)

Histogram of dists

dists

F
re

qu
en

cy

0 1000 2000 3000 4000 5000 6000 7000

0
50

10
0

15
0

20
0

25
0

We’ll set the distance intervals up to a maximum distance of 8000 meters and focus on smaller distances.
Since the resolution of the raster grid is 30 metres the first distance intervals will be multiples of 30 meters.
set distance intervals
brks <- c(0, 30, 60, 90, 120, 150, 180, 500, 1000, 8000)
we do not produce scatterplots for the all data pairs as we
have seen there are over 350 million of them. We sample 500
data points which yield over 100k data pirs
N <- 500
choose(N, 2) #number of data pairs with sample size

[1] 124750

set.seed(4)
smpl <- sample(1:nrow(model.df), N)

70

we load gstat library for plotting scatterplots for each
distance interval, for calculating sample variogram,
fitting parametric variogram and interpolation model in
general
library(gstat)
hscat(pval ~ 1, model.df[smpl,], breaks = brks)

lagged scatterplots

pval

pv
al

0.0

0.2

0.4

0.6

0.8

1.0
r = −0.208

(0,30]

0.0 0.4 0.8

r = 0.347
(30,60]

r = 0.213
(60,90]

0.0 0.4 0.8

r = 0.0517
(90,120]

r = 0.148
(120,150]

0.0 0.4 0.8

r = 0.251
(150,180]

r = 0.0819
(180,500]

0.0 0.4 0.8

r = 0.0522
(500,1e+03]

0.0

0.2

0.4

0.6

0.8

1.0r = −0.00814
(1e+03,8e+03]

In general, correlation between points 180 metres apart or less is high and for those further apart much less,
although the pattern is somewhat noisy or inconsistent. In the next section we will get a better idea of the
correlation pattern with respect to the distance between points by estimating the variogram function.

4.1.1.1 Variogram

In geostatistics the spatial correlation is modelled by the variogram instead of a correlogram or covariogram,
largely for historical reasons. Under intrinsic stionarity the the variogram is defined as:

γ(h) = 1
2E[(P (s)???P (s+ h)]2 (14)

$

Here, the word variogram will be used synonymously with semivariogram. The variogram plots semivariance
as a function of distance. In contrast to the correlation function ρ(h) the smaller γ(h) is the larger the
correlation so that γ(h) is usually an increasing function of l = ||h||: normally the further two points s1 and
s2 are in space the weaker is the correlation of the variables p(s1) and p(s2). Under the intrinsic stationarity

71

and isotropy assumption, the variogram can be estimated from Nh sample data pairs p(si), p(si + h) for a
number of distances (or distance intervals) h̃j by:

γ̂(h̃j) = 1
2Nh

Nh∑
i=1

(p(si)− p(si + h))2∀h ∈ h̃j (15)

and this estimate is called the sample variogram. We calculate and plot the sample the sample variogram:
brks <- c(seq(0, 990, by = 30), seq(1000, 4000, 500))
v.samp <- variogram(pval ~ 1, model.df, cloud = FALSE, cressie = TRUE,

boundaries = brks)
plot(v.samp)

distance

C
re

ss
ie

's
 s

em
iv

ar
ia

nc
e

0.02

0.04

0.06

0.08

1000 2000 3000

Although the spatial correlation pattern seems plausible -as the distance between points increases the sample
variogram function increases indicating a decrease in correlation- we make sure that it isn’t a simply a random
pattern by calculating and plotting twenty sample variograms for the same set of p-values but where the
associated coordinates have been re-asigned randomly so that any spatial correlation is lost.
dummy plot to obtain plot window with appropriate p-value
limits (0,1)
plot(v.samp[, 2], v.samp[, 3], ylim = c(0, 1.1 * max(v.samp[,

3])), col = "white")
aux.df <- model.df
for (i in 1:20) {

re arrange pvalues assigning them to random pixels
aux.df$pval <- model.df$pval[sample(nrow(model.df))]
calculate sample variogram of non spatially correlated
p-values

72

v.aux <- variogram(pval ~ 1, aux.df, cloud = FALSE, cressie = TRUE,
boundaries = brks)

plot non spatial correlation sample variogram
lines(v.aux[, 2], v.aux[, 3], col = "grey", type = "l")

}
plot true variogram at the end
lines(v.samp[, 2], v.samp[, 3], col = "red")

0 1000 2000 3000

0.
00

0.
02

0.
04

0.
06

0.
08

v.samp[, 2]

v.
sa

m
p[

, 3
]

We can see that the spatial correlation is not a product of a random p-value observations. We will now fit a
parametric variogram function to our sample variogram to guard against overfitting to data and in order to
have a simple model (specified by m, σ2 and γ(l)) that is easier to use for interpolation. Additionally, to
ensure that predictions are associated with non-negative prediction variances, the matrix with semivariance
values between all observation points and any possible prediction point needs to be non-negative definite. For
this, simply plugging in sample variogram values from the sample variogram is not sufficient, but plugging in
from a parametric variogram model is.

Most parametric variograms have a nugget, partial sill and range parameter while some have additional
parameters specifying the shape of the variogram function γ(h). The following figure shows a variogram with
its various components.

We will now fit a parametric diagram by choosing from the family of variograms that most closely matches
our sample variogram, estimating the initial values for the partial sill, range and nugget from our plot of
the sample variogram and then updating this estimation using the function fit.variogram from the gstat
library. This function uses damped least squares to estimate the parameters.
visualize available parametric variogram models
show.vgms()

73

Figure 23: Variogram parameters

distance

se
m

iv
ar

ia
nc

e

0

1

2

3
vgm(1,"Nug",0)

0.0 1.0 2.0 3.0

vgm(1,"Exp",1)vgm(1,"Sph",1)

0.0 1.0 2.0 3.0

vgm(1,"Gau",1)vgm(1,"Exc",1)

0.0 1.0 2.0 3.0

vgm(1,"Mat",1)

vgm(1,"Ste",1)vgm(1,"Cir",1)vgm(1,"Lin",0)vgm(1,"Bes",1)vgm(1,"Pen",1)

0

1

2

3
vgm(1,"Per",1)

0

1

2

3

0.0 1.0 2.0 3.0

vgm(1,"Wav",1)vgm(1,"Hol",1)

0.0 1.0 2.0 3.0

vgm(1,"Log",1)vgm(1,"Pow",1)

0.0 1.0 2.0 3.0

vgm(1,"Spl",1)

We judge the exponential class (Exc) to most closely resemble our sample variogram.

74

we initialize parameters using sample variogram plot
v.mod <- vgm(psill = 0.03, "Exc", range = 200, nugget = 0.05)
run parameter estimation
v.fit <- fit.variogram(v.samp, v.mod, fit.kappa = TRUE)

We now plot the sample variogram and our fitted parametric variogram.
plot(v.samp, v.fit)

distance

C
re

ss
ie

's
 s

em
iv

ar
ia

nc
e

0.02

0.04

0.06

0.08

1000 2000 3000

The fit seems to be reasonably close. Normally we would try two or three parametric families of variograms
and then select using cross-validation. For simplicity we stick with the exponential class of variograms. In
the next section we will use our fitted variogram model to interpolate the missing p-values in our raster grid.

4.1.1.2 Prediction

We use our parametric variogram model to interpolate, or krige, the missing values in our p-value raster.
Kriging consists of estimating a missing value as a weighted average of observed values. The weight of an
observationa distance of l away from the location of the missing value is a function of γ(l). Kriging gives the
best linear unbiased prediction of the missing value. We first obtain a dataframe with the coordinates of the
missing values and transform it into a SpatialPointsDataFrame. The krige function from the gstat package
takes as input the locations at which to interpolate in SpatialPointsDataFrame format.
Obtain coordinates of missing values
fullModel.df <- coral.Info.df[, c("pixel", "x", "y", "type",

"2016-01-23")]
colnames(fullModel.df) <- c("pixel", "x", "y", "type", "pval")
fullModelNA.df <- fullModel.df[which(is.na(fullModel.df$pval)),

]
transform dataframe into a SpatialPointsDataFrame

75

coordinates(fullModelNA.df) <- c("x", "y")
projection(fullModelNA.df) <- projection(bleach.r)

We now perform interpolation or kriging with our parametric variogram v.fit at the location of the missing
values. This is quite computationally intensive!
pm <- proc.time()
krig <- krige(pval ~ 1, locations = model.df, newdata = fullModelNA.df,

model = v.fit)
proc.time() - pm
4.06 HRS

We now fill in the missing raster grid values.
fullModel.df$pval[which(is.na(fullModel.df$pval))] <- as.data.frame(krig)[,

3]
bleachFull.r <- rasterFromXYZ(fullModel.df[, c("x", "y", "pval")],

crs = CRS(projection(coral.r)))

Lets plot our complete potential bleaching raster.
plot(bleachFull.r)
plot(maldives.shp, add = T)

326000 328000 330000 332000

43
00

00
43

20
00

43
40

00

0.2

0.4

0.6

0.8

Interpolated regions are quite smooth since the predicted value is an expectation and lacks any noise. However,
the rest of the map is still quite noisy. We could use our variogram model to smooth the map by interpolating
at non-missing locations but, as we have seen, kriging is quite computationally expensive. In the next section
we’ll use convolutions to smooth our map.

4.2 Smoothing

We will use 2d-convolutions which correspond to a 2d-moving average. The imager package has a convolve
functon for efficient convolution of images. We will use two approaches to smoothing. In the first we simply
spatially smooth the p-value raster directly. In the second we’ll first threshold the p-values to obtain a 0/1

76

raster of predicted bleached locations and then use a majority neighborhood rule to decide if a given pixel is
bleached or not.

We first write a conversion function to convert cimg images back to raster format for plotting since the raster
plotting functions are better for images with one band.
conversion of rasters to cimg is quite straight forward
bleachFull.cimg <- as.cimg(as.matrix(bleachFull.r))
dim(bleachFull.cimg)

[1] 185 172 1 1

conversion of cimg to rasters is a little trickier. We
write a function that takes in cimg and a template
containing the relevant raster grid and returns the cimg
image in raster format
cimgToRaster <- function(cimg, tmpl.r) {

convert cimg to data frame format
df <- as.data.frame(cimg)[, c(2, 1, 3)]
colnames(df) <- c("x", "y", "pval")
the y coordinate counts from the top down for cimgs and
from bottom up for rasters so we reverse
df$y <- rev(df$y)
obtain coordinates of raster to use the min x and y
coordinates and resolution of grid to shift and scale
coordinates appropriately
crds <- as.data.frame(coordinates(tmpl.r))
df$x <- (df$x - 1) * res(tmpl.r)[1] + min(crds$x)
df$y <- (df$y - 1) * res(tmpl.r)[1] + min(crds$y)
convert to raster format once coordinates are fixed
rast <- rasterFromXYZ(df, crs = CRS(projection(tmpl.r)))
return(rast)

}
we test our conversion function making sure we get back
original raster
bleachFull.r2 <- cimgToRaster(bleachFull.cimg, bleachFull.r)
all(values(bleachFull.r) == values(bleachFull.r2))

[1] TRUE

all(coordinates(bleachFull.r) == coordinates(bleachFull.r2))

[1] TRUE

We now define a filter or window with a circular shape with a 5 pixel radius. The filter is an actual cimg
image of dimension 10 by 10 where 80 pixels make up the circle and 20 the difference between the 10 by 10
square and the circle. The pixel value is 1 if its in the circle and 0 other wise. We want to obtain a moving
average so we divide the pixel value by the sum of all pixel values in the window.
filter <- px.circle(5, 10, 10)
sum(filter)

[1] 80

filter <- filter/sum(filter)
plot(filter)

77

0 5 10

10
8

6
4

2

We now obtain a smoothed potential bleaching map by convolving original map with our filter. This is our
first approach.
bleachFullCnv.cimg <- convolve(bleachFull.cimg, filter)
bleachFullSmooth.r <- cimgToRaster(bleachFullCnv.cimg, bleachFull.r)
plot(bleachFullSmooth.r)
plot(maldives.shp, add = T)

326000 328000 330000 332000

43
00

00
43

20
00

43
40

00

0.2

0.4

0.6

0.8

We now use the second approach. We want to threshold p-values to obtain a map of predicted potential
bleaching sites. A natural threshold would be 0.05 or 0.1 since these are values at which p-values are normally
thresholded. The problem is that since the hypothesis test have a spatial dependence structure if we threshold
them individually at a certain level α the actual joint significance is likely to be different. There exist methods
to correct for the spatial dependence structure in order to threshold p-values and control the significance for
example in Leek and Storey (2008). For simplicity we will simply use the thresholding level α as a parameter
of the methodology and arbitrarily set it at 0.5.

78

Set thresholding level
thrs.bleach <- 0.5
Produce a raster of predicted potential bleaching sites
bleachThrs.r <- bleachFull.r < thrs.bleach
plot(bleachThrs.r)
plot(maldives.shp, add = T)

326000 328000 330000 332000

43
00

00
43

20
00

43
40

00

0.0

0.2

0.4

0.6

0.8

1.0

We now want to implement a majority rule whereby if 60% or more of the neighborhood of a pixel is bleached
we consider the pixel to be bleached. We can implement this by convolving our 0/1 potential bleaching site
indicator raster and then thresholding it at 0.6.
bleachThrs.cimg <- as.cimg(as.matrix(bleachThrs.r))
bleachThrsCnv.cimg <- convolve(bleachThrs.cimg, filter)
bleachThrsCnv.r <- cimgToRaster(bleachThrsCnv.cimg, bleachFull.r)
plot(bleachThrsCnv.r)
plot(maldives.shp, add = T)
thrs.neighbor <- 0.6
bleachMajority.r <- bleachThrsCnv.r > thrs.neighbor
plot(bleachMajority.r)
plot(maldives.shp, add = T)

79

326000 328000 330000 332000

43
00

00
43

20
00

43
40

00

0.0

0.2

0.4

0.6

0.8

1.0

326000 328000 330000 332000

43
00

00
43

20
00

43
40

00

0.0

0.2

0.4

0.6

0.8

1.0

We obtain our final potential bleaching site map.

5 Extensions

The purpose of this practical is to explore the use of landsat imagery data in a landcover classification
application. In order to keep the analysis relatively simple many of the model or parameter choices were
not justified sufficiently and model assumptions were not rigorously checked. Additionally, we did not have
ground data available for maldives bleaching so the validity of the methodology in identifying bleaching sites
has not been properly tested.

Possible improvements to the methodology in order to validate its efficacy in identifying bleaching sites
include:

• Corroborate validty. Ways of doing this include:

a. Obtain ground bleaching datg and compare results.

80

b. Perform study in other areas with bleaching events and see if behavior of median p-values is as in
this study.

c. Use methodologies with other input information such as those based on ocean surface temperature
estimation and compare results.

d. Analyse the fitted fourier model parameter values especially α0 which corresponds to the general
reflectance level. Did α0 increase (bleached coral theoretically not only changes but increases
surface reflectance) after the bleaching event in all or most pixels? Can we perform the hypothesis
test:

H0 : α01 < α02

Ha : α01 ≤ α02 (16)

• Justify model/parameter choices

1. Fourier model. Justify more thoroughly choice of ultra-blue. Explore use of other bands or
indices of bands such as NDVI. Perform residual analysis and explore use of transformations for
response variable in case of non-normality. Check for autocorrelation of residuals and for outliers.

2. Forward selection. Explore other ways of selecting variables. Perhaps the reflectance of all
pixels should be modeled as a function of the same seasonal and tidal predictors. It might have
been best to either add both fourier terms (sin and cos) or neither, but not only one.

3. Seemingly Unrelated Regression. Account for spatial dependence of hypothesis tests and
p-values which renders the joint analysis invalid using @Leek approach.

4. Interpolation. Compare several parametric variogram models and use cross validation to select
best one. Explore interpolation of a transformation of p-values instead of p-values themselves to
justify underlying gaussian process modeling used in kriging.

5. Smoothing. Justify thresholding choices (p-value threshold and majority rule levels).

References

Bivand, Roger S., Edzer Pebesma, and Virgilio Gómez-Rubio. 2013. Applied Spatial Analysis with R, 2nd Ed.
ny: Springer.

Leek, Jeffrey T., and John D. Storey. 2008. “A General Framework for Multiple Testing Dependence.”
Proceedings of the National Academy of Sciences of the United States of America 105 (48): 18718–23.

Yamano, Hiroya, and Masayuki Tamura. 2004. “Detection Limits of Coral Reef Bleaching by Satellite Remote
Sensing: Simulation and Data Analysis.” Remote Sensing of Environment 90: 86–103.

Zhu, Zhe, and Curtis E. Woodcock. 2012. “Object-Based Cloud and Cloud Shadow Detection in Landsat
Imagery.” Remote Sensing of Environment 118: 83–94.

6 Installing rgeos and rgdal packages on MacOSX

Instructions for installing rgeos and rgdal packages on MacOSX:

• install xquartz, see http://www.xquartz.org/

• install GEOS and GDAL frameworks, see http://www.kyngchaos.com/files/software/frameworks/
GDAL_Complete-1.11.dmg

81

http://www.xquartz.org/
http://www.kyngchaos.com/files/software/frameworks/GDAL_Complete-1.11.dmg
http://www.kyngchaos.com/files/software/frameworks/GDAL_Complete-1.11.dmg

• optionally XCode and Apple Command Line Developer Tools, see http://osxdaily.com/2014/02/12/
install-command-line-tools-mac-os-x/

• optionally Fortran compiler, see http://stat.ethz.ch/CRAN/doc/manuals/r-release/R-admin.html#
OS-X

82

http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/
http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/
http://stat.ethz.ch/CRAN/doc/manuals/r-release/R-admin.html#OS-X
http://stat.ethz.ch/CRAN/doc/manuals/r-release/R-admin.html#OS-X

	Introduction
	Landsat data
	Description
	Study area
	Downloading Landsat data
	Top of atmosphere reflectance
	Surface reflectance
	Cloud detection using Fmask

	Levels of reflectance data
	Spectral bands
	Quality flags
	Study period

	Change point analysis
	Pixelwise fourier model
	Forward selection
	Seemingly Unrelated Regression
	Theory
	Application to change point analysis
	Results
	Plausible bleaching dates
	Map of bleaching

	Post-processing
	Interpolation
	Model
	Variogram
	Prediction

	Smoothing

	Extensions
	References
	Appendix

	fd@rm@0:
	fd@rm@1:

