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Motivation:

Causal discovery in Earth System science: no experiments possible on glo
scale, but different regimes act as “natural” interventions to create experimer
like data.

Goal:

Can we use this heterogeneity to find causal drivers of phenomenon such as
extreme wildfires (PyroCb) and Photosynthesis (GPP).



Use cases:

Photosynthetic activity (toy model): can we separate direct causes of GPP
from correlated variables (effects, shared common causes, indirect
causes)?

PyroCb ocurrence (“real world” data): why do som large fires generate
pyroCb and others do not?



Toy GPP
casual model

climate
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Invariant Causal Prediction
(ICP) [Peters, J. et al 2016]:

Minimal conditional
independence condition:

GPP independent of
environment E given direct
causes S*={soil moist., rad}

This is the minimal set S where
this conditional independence
holds



€& 3. Clouds

5. Downburst +
lightning

ble fire




28 variables
total

atmospheric

fuel

~ 100 pyroCb
events
comprising ~6k
hourly
observations

in North
America and
Australia

Variable Description Sensitive to

chl 0.47 ym smoke, haze

ch2 0.64 um terrain type

ch3 0.86 um vegetation

ch4 3.9 um thermal emissions & cloud ice cryst:

ch{5,6} {11.2,13.3} pm thermal emissions & cloud opacity

{u,v} {u,v} comp. of wind at 250 hPa upper-level dynamics which influenc
motion

{u,v}10 10m {u,v} component of wind change in fire intensity and spread

fel0 10 m gusts since prev. post-processing  (same as above)

blh boundary layer height height of turbulent air at the surface

cape convective available potential energy energy for air to ascend into atmospl

cin convective inhibition energy that will prevent air from risi

F4 geopotential energy needed for air to ascend int
sphere as a function of altitude

[slhf, sshf'} surface {latent, sensible} heat flux heat released or absorbed {from, neg
phase changes

w surface vertical velocity ascent speed of the plume from the v

cv{h,l} fraction of {high, low} vegetation available fuel for the wildfire

type{H,L} type of {high, low} vegetation (same as above)

r{650,750,850}

rel. humidity at {650,750,850} hPa

condensation of vapour into clouds

From Tazi, K., et al 2022



|ICP algorithm

To find the causes of Y:

1. For each subset S, of candidate predictors
perform conditional independence test H:

Y I E | Xg-.

2. Take intersection of S, where H. is not rejected
as causal predictors.

ICP: 28 variables in pyroCb dataset -> 250 million tests!

Greedy ICP: start with all candidate predictors and exclude one at a time -> 406 tests
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Limitations of the ICP approach

ICP :

- number of hypothesis tests needed very large

-  Dependence among predictors results in empty set inference
Greedy ICP

- order dependent- variables chosen for exclusion in beginning affect inference.



Invariant Causal Features

Can we use Neural Networks to:
1. learn a causal representation (get around ICP and Greedy ICP problems)

2. Learn latent environment -> identify our “quasi-experiments” (climatic type in
GPP toy model)
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Prediction Loss:

First term the usual
MSE or Cross Entropy
loss

Second term in loss
conditional
independence proxy
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candidate X

causes
Each rectangle
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L(y, x; Wi, wy, o, ) = Li(y, 2 wg, we, o, B) + A |V, L1 (y, 2 wg, we, o, B)

candidate X

causes
Q We don’t want to use
(8 3 environment info for
' prediction. Use it to:

Q Q Q O Q O e enforce conditional

w latent independence proxy
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Latent causal environment

representation



With toy GPP causal model, with knc
ground truth we test if we can learn:

1. causal representation

2. climatic type (latent environmer




05 The representation is
0.4 using c4 as a proxy
0.3 for GPP

precip  rad cl [} o o



Ground truth climatic Estimated climatic
region region

This might be a way of investigating when environments create different
conditions that can be exploited in causal discovery.



Take aways:

1. ICP unfeasible when large number of candidate predictors.

2. Greedy ICP finds a plausible set of causes for pyroCb but inference
IS unstable

3. Unclear if NN are effective in finding causal representation but may
help to identify natural interventions which could help in causal
discovery .



Next Steps:

1. Can we get NN to learn correct causal representation.

2. Can we use learnt environment in causal discovery with mixed data
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