Learning causal drivers of PyroCb

Emiliano Diaz Salas Porras, Gherardo Varando, Fernando Iglesias-Suarez, Gustau Camps-Valls, Kenza Tazi, Kara D. Lamb, Duncan Watson-Parris, Ashwin Braude, Daniel Okoh, Paula Harder, Nis Meinert

Machine Learning for Climate Science

PROCESSING

ISMILE

Motivation:

Causal discovery in Earth System science: **no experiments possible** on global scale, but different regimes act as "natural" interventions to create **experiment like data**.

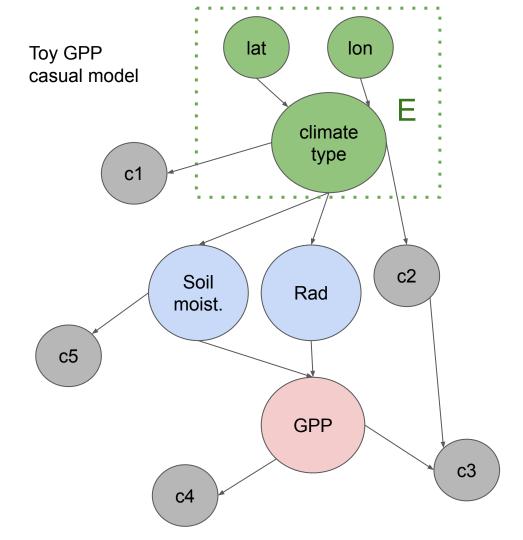
Goal:

Can we use this heterogeneity to find causal drivers of phenomenon such as extreme wildfires (PyroCb) and Photosynthesis (GPP).

Use cases:

photosynthetic activity (toy model): can we separate direct causes of GPP from correlated variables (effects, shared common causes, indirect causes)?

pyroCb ocurrence (real observations): why do some large fires generate pyroCb and others do not?



Invariant Causal Prediction (ICP) [Peters, J. et al 2016]:

Minimal conditional independence condition:

GPP independent of environment E given direct causes S*={soil moist., rad}

This is the minimal set S where this conditional independence holds

Abstract EGU23-16846

Sensitive to

EGU

	variable	Description	Sensitive to
28 variables total	ch1 ch2 ch3	0.47 μm 0.64 μm 0.86 μm	smoke, haze terrain type vegetation
atmospheric	ch4 ch{5,6}	3.9 μm {11.2, 13.3} μm	thermal emissions & cloud ice crystal size thermal emissions & cloud opacity
fuel thermal	{ <i>u</i> , <i>v</i> } { <i>u</i> , <i>v</i> }10 <i>fg</i> 10	 {u,v} comp. of wind at 250 hPa 10 m {u,v} component of wind 10 m gusts since prev. post-processing 	upper-level dynamics which influence rising motion change in fire intensity and spread (same as above)
	blh	boundary layer height	height of turbulent air at the surface
~ 100 pyroCb events comprising ~6k	cape cin z	convective available potential energy convective inhibition geopotential	energy for air to ascend into atmosphere energy that will prevent air from rising energy needed for air to ascend into atmo- sphere as a function of altitude
	{slhf, sshf}	surface {latent, sensible} heat flux	heat released or absorbed {from, neglecting} phase changes
hourly	W	surface vertical velocity	ascent speed of the plume from the wildfire
observations in North America and Australia	$cv\{h,l\}$ type $\{H,L\}$	fraction of {high, low} vegetation type of {high, low} vegetation	available fuel for the wildfire (same as above)
	$r\{650,750,850\}$	rel. humidity at {650,750,850} hPa	condensation of vapour into clouds

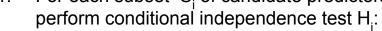
Description

From Tazi, K., et al 2022

Variable

ICP algorithm

To find the causes of Y:1. For each subset S_i of candidate predictors

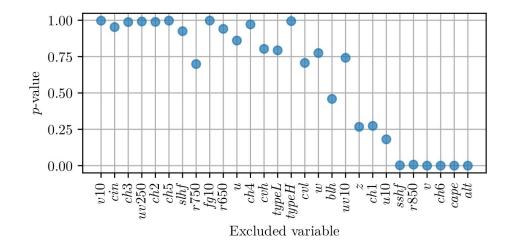


2. Take **intersection** of S_i where H_i is not rejected as causal predictors.

 $Y \perp E \mid X_{S^*}.$

ICP: 28 variables in pyroCb dataset -> 250 million tests!

Greedy ICP: start with all candidate predictors and exclude one at a time -> 28 tests



Plot shows p-value of H_i: $Y \perp E \mid X_{S^*}$. as we exclude variables with Greedy ICP

	variable	proxy for	
alt	altitude	energy needed to breach atmosphere	
sshf	surface sensible heat flux	energy transferred by fire	
ch6	13.3 µm reflectance		
r850	relative humidity at 850 hPa	potential for cloud formation in atmosphere	
v	component of wind at 250 hPa	atmospheric instability	
cape	convective available potential energy		

Limitations of the ICP approach

ICP :

- number of hypothesis tests needed very large
- Dependence among predictors results in empty set inference

Greedy ICP

- order dependent- variables chosen for exclusion in beginning affect inference.

Invariant Causal Features

Can we use Neural Networks to:

- 1. learn a causal representation (get around ICP and Greedy ICP problems)
- 2. Learn latent environment -> identify our "quasi-experiments" (climatic type in GPP toy model)

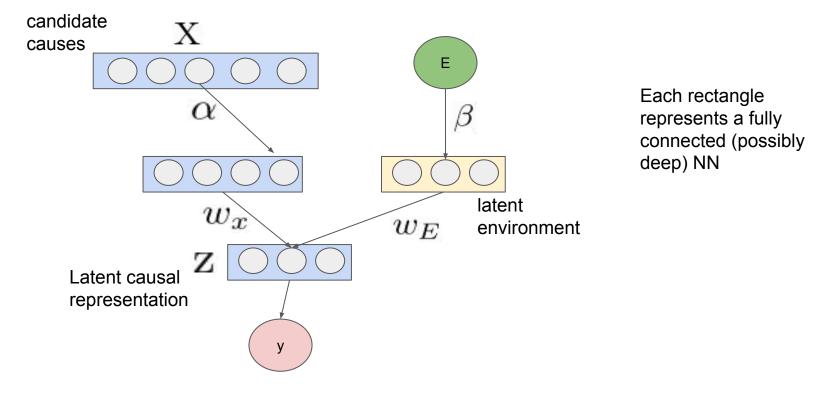
$L(y, x; w_E, w_x, \alpha, \beta) = L_1(y, x; w_E, w_x, \alpha, \beta) + \lambda ||\nabla_{w_E} L_1(y, x; w_E, w_x, \alpha, \beta)||_2^2$

Prediction Loss:

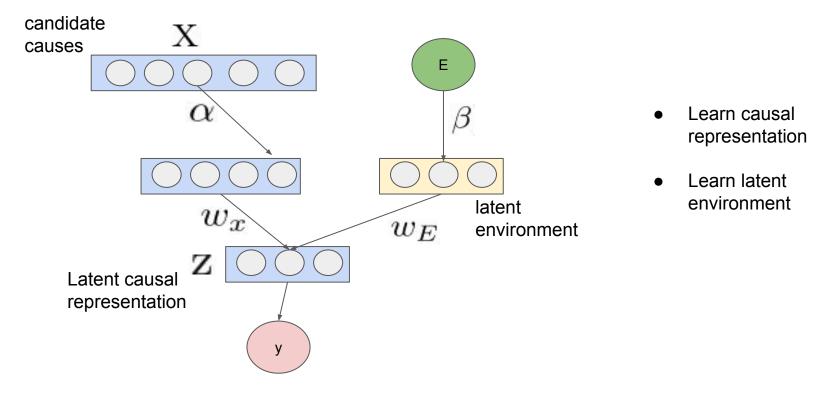
First term the usual MSE or Cross Entropy loss

Second term in loss conditional independence proxy

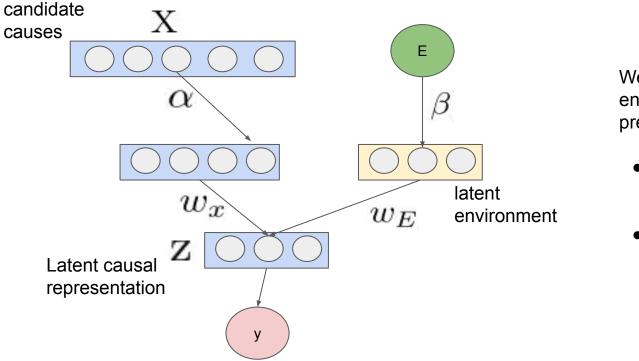
$L(\mathbf{y}, \mathbf{x}; \mathbf{w}_E, w_x, \alpha, \beta) = L_1(y, x; w_E, w_x, \alpha, \beta) + \lambda ||\nabla_{w_E} L_1(y, x; w_E, w_x, \alpha, \beta)||_2^2$



$\mathcal{L}(\mathbf{y}, \mathbf{x}; \mathbf{w}_E, w_x, \alpha, \beta) = \mathcal{L}_1(y, x; w_E, w_x, \alpha, \beta) + \lambda ||\nabla_{w_E} \mathcal{L}_1(y, x; w_E, w_x, \alpha, \beta)||_2^2$

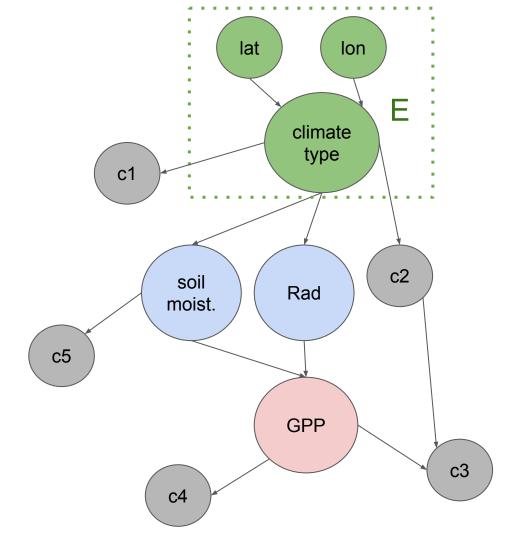


$\mathcal{L}(\mathbf{y}, \mathbf{x}; \mathbf{w}_E, w_x, \alpha, \beta) = \mathcal{L}_1(y, x; w_E, w_x, \alpha, \beta) + \lambda ||\nabla_{w_E} \mathcal{L}_1(y, x; w_E, w_x, \alpha, \beta)||_2^2$



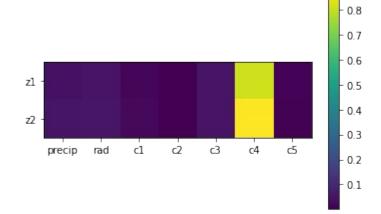
We don't want to use environment info for prediction. Use it to:

- enforce conditional independence proxy
- estimate latent environment



With toy GPP causal model, with **known** ground truth we test if we can learn:

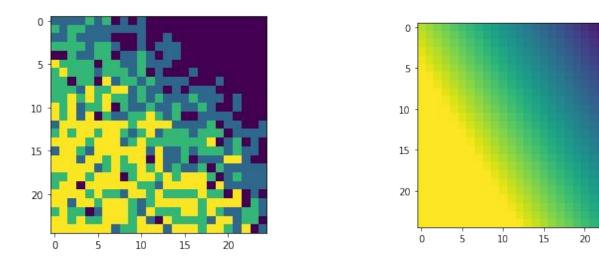
- 1. causal representation
- 2. climatic type (latent environment)



The representation is using c4 as a proxy for GPP

Ground truth climatic region

Estimated climatic region



This might be a way of investigating when environments create different conditions that can be exploited in causal discovery.

Take aways:

- 1. ICP unfeasible when large number of candidate predictors.
- 2. Greedy ICP finds a plausible set of causes for pyroCb but inference is unstable
- 3. Unclear if NN are effective in finding causal representation but may help to identify natural interventions which could help in causal discovery .

Next Steps:

- 1. Can we get NN to learn correct causal representation.
- 2. Can we use learnt environment in causal discovery with mixed data

Acknowledgements

This project was first developed as part of the Frontier Development Lab (FDL) Aerosols-Europe 2022 challenge

European Research Council (ERC) Synergy Grant "Understanding and Modelling the Earth System with Machine Learning (USMILE)" has provided funding for research subsequently.

References

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction: identification and confidence intervals. Journal of the Royal Statistical Society Series B, 78(5):947–1012, 2016. URL https://EconPapers.repec.org/RePEc:bla:jorssb:v: 78:y:2016:i:5:p:947-1012.

Kenza Tazi, Emiliano Díaz Salas-Porras, Ashwin Braude, Daniel Okoh, Kara Lamb, Duncan Watson-Parris, Paula Harder, and Nis Meinert. Pyrocast: a machine learning pipeline to forecast pyrocumulonimbus (pyrocb) clouds. In NeurIPS 2022 Workshop-Tackling Climate Change with Machine Learning, 2022.